
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

EXAMINER-PRO: Testing Arm Emulators across
Different Privileges

Muhui Jiang, Xiaoye Zheng, Rui Chang, Yajin Zhou, Xiapu Luo

Abstract—Emulators are commonly employed to construct
dynamic analysis frameworks due to their ability to perform
fine-grained tracing, monitor full system functionality, and run
on diverse operating systems and architectures. Nonetheless, the
consistency of emulators with the real devices, remains uncertain.
To address this issue, our objective is to automatically identify
inconsistent instructions that exhibit different behavior between
emulators and real devices across distinct privileges, including
user-level and system-level privilege.

We target the Arm architecture, which provides machine-
readable specifications. Based on the specification, we propose
a sufficient test case generator by designing and implementing
the first symbolic execution engine for the Arm architecture spec-
ification language (ASL). We generated 2,774,649 representative
instruction streams and developed a differential testing engine,
EXAMINER PRO. With this engine, we compared the behavior
of real Arm devices across different instruction sets (A32, A64,
T16, and T32) with the popular QEMU emulator, both at the
user-level and system-level. To demonstrate the generalizability
of EXAMINER PRO, we also tested two other emulators, namely
Unicorn and Angr. We find that undefined implementation in
Arm manual and bugs of emulators are the major causes of
inconsistencies. Furthermore, we discover 17 bugs, which influ-
ence commonly used instructions (e.g., BLX). With the inconsistent
instructions, we build three security applications and demonstrate
the capability of these instructions on detecting emulators, anti-
emulation, and anti-fuzzing.

Index Terms—Emulator, Differential Testing, Inconsistent In-
structions

I. INTRODUCTION

A CPU emulator is a powerful tool as it provides funda-
mental functionalities (e.g., tracing, record and replay) for the
dynamic analysis. Though hardware-based tracing techniques
exist, they have limitations compared with software emulation.
For example, Arm ETM has a limited Embedded Trace Buffer
(ETB). The size of ETB of the Juno Development Board is
64KB 1 [1]. On the contrary, software emulation is capable
of tracing the whole program, provides user-friendly APIs
for runtime instrumentation, and is supported by multiple
operating systems and architectures. Nevertheless, software

M. Jiang, X. Zheng, R. Chang, Y. Zhou and are with the Zhejiang Uni-
versity, Hangzhou 310027, China. E-mail: jiangmuhui@gmail.com, {xiaoyez,
crix1021, yajin zhou}@zju.edu.cn.

X. Luo is with the Hong Kong polytechnic university, Hong Kong SAR,
China. E-mail: csxluo@comp.polyu.edu.hk.

Corresponding author: Rui Chang.

1The ETB size of different SoCs may be different. However, it is usually
limited due to the chip cost and size.

emulation complements the hardware-based tracing techniques
and provides rich functionalities for dynamic analysis frame-
works.

Indeed, many dynamic analysis frameworks [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17] are built based on the state-of-the-art CPU emu-
lators (e.g., QEMU [18], Unicorn [19], Angr [20]) to con-
duct malware analysis, live-patching, crash analysis and etc.
Meanwhile, many fuzzing tools utilize CPU emulators to
fuzz binaries, e.g., the QEMU mode of AFL [21], Unicorn-
fuzz [22], FirmAFL [23], P2IM [24], HALucinator [25], and
TriforceAFL [26].

The widespread use of software emulation in dynamic
analysis is based on the implicit assumption that emulators
implement the emulated processor ISA correctly. Particularly
in malware analysis, there may be a stronger implicit assump-
tion that the execution results of an instruction on the CPU
emulator are identical to those on a real device. However, the
validity of these assumptions in reality is uncertain. In fact,
implementing CPU emulators correctly is a challenging task,
and the execution result can differ due to bugs in the CPU
emulator or differences in implementation strategies compared
to the real device, as our work has demonstrated. These
discrepancies can compromise the reliability of emulator-based
dynamic analysis. For example, malware can exploit these
differences to evade analysis in the emulator and protect its
malicious behavior [27], [28], [29], [30].

In this work, we aim to test Arm emulators across differ-
ent privileges (i.e., user-level and system-level). Specifically,
we will automatically locate inconsistent instructions, which
behave differently between emulators and real devices, for
the Arm architecture. In this paper, instruction denotes the
category in terms of functionality, which is usually represented
by its name in Arm manual. For example, STR (immediate)

is an instruction, which aims to store a word into memory.
Automatically locating inconsistent instructions is not easy.
The first challenge is the diversity of the Arm architecture,
which includes multiple versions (e.g., ARMv5, ARMv6,
ARMv7, and ARMv8), different register widths (32 bits or 64
bits), and various instruction sets (Arm, Thumb-1, and Thumb-
2). We need to generate a sufficient number of instruction
streams that cover these variants while minimizing the time
cost. Simply enumerating all 32-bit instruction streams would
be inefficient, and randomly generated streams would not
be representative (Section IV-A). The second challenge is to
ensure a deterministic execution environment for each test
case. We must set up the same CPU state and disable all
asynchronous events before executing the instruction stream.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

After execution, we automatically compare the results to
determine any discrepancies.

Locating inconsistent instructions at the system-level poses
significant challenges. First, we must address the issue of in-
specting the system’s state at any time, even in the presence of
fatal exceptions. This requires complete control of the system,
enabling us to freeze the system and dump its state before
and after executing the tested instruction streams. Second,
we must effectively handle instructions that may cause the
tested machines to enter unusable states, such as kernel panics.
These situations require special attention as they can render the
system unresponsive and require manual intervention to regain
control. Addressing these challenges is essential to achieving
reliable and effective system-level testing.

Previous works [31], [32], [33], [34], which target x86/x64
architectures, provide valuable insights. However, they ei-
ther use randomized test cases or rely on the emulator or
hardware to generate the test cases, which is not sufficient
and the results may be biased. Meanwhile, existing designed
differential testing frameworks (e.g., EmuFuzzer [33]) require
that the emulator should be running inside the compared
real device, which are not scalable. Furthermore, whether the
findings can be applied on the Arm architecture is unknown.
Though recent work (i.e., iDEV [35]) studies the semantic
deviation issue of Arm instructions, they lack a systematic
way to generate sufficient test cases. Instead, they enumerate
a huge number of (i.e., 33 million) redundant test instructions
that cannot cover all the instruction behaviors. Meanwhile,
they only focus on the triggered signals during the execution
process without checking the whole CPU state, resulting in
many inconsistent instructions unexplored. Furthermore, the
evaluation is limited to ARMv7 and QEMU. There are many
other Arm architectures (e.g., ARMv5, ARMv6, and ARMv8)
and lightweight but also popular emulators (i.e., Unicorn,
Angr), which many frameworks are based on [17], [22], [36],
[37]. We will discuss the major differences between iDEV and
our work in Section V.

Our system is able to automatically locate inconsistent
instructions in a systematic mechanism with the following two
key insights.
Syntax and semantics aware test case generator To
generate representative test cases, we propose a syntax and
semantics aware methodology. Each Arm instruction consists
of several instruction encodings, which describe which parts
of the instruction are constant and which parts can be mutated
(Fig. 1a). The non-constant parts are called encoding symbols.
Each instruction encoding has specific decoding and execution
logic, which is is expressed in the Arm’s Architecture Specific
Language (ASL) [38] . We call it ASL code (Fig. 1b and 1c).
ASL code executes based on the concrete values of the
encoding symbols. In this case, we first take the syntax-aware
strategy. For each encoding symbol, we mutate it based on pre-
defined rules. For instance, for the immediate value symbol,
the values in the mutation set cover the maximum value,
the minimum value and a fixed number of random values.
This strategy generates syntactically correct instructions. We
further take a semantics-aware strategy to generate more
test cases as the previous strategy may only cover limited

instruction semantics (Section II-B). To this end, we extract the
constraints, which influence the execution path, in ASL code.
We solve the constraints and their negations by designing and
implementing the first symbolic execution engine for ASL to
find the satisfied values of the encoding symbols. By doing
so, the generated test cases can cover different semantics of
an instruction.
Deterministic differential testing engine Comparing the
execution result of emulators/real devices with the Arm speci-
fication directly relies on a precise ASL interpreter. However,
the precision of the ASL interpreter cannot be guaranteed.
In this case, we propose a differential testing engine, which
uses the generated test cases as inputs. To get a deterministic
testing result, we provide the same context when executing
an instruction stream on a real CPU and an emulator. We
complete this goal by inserting the prologue and epilogue
instructions. At the user-level, the testing process incorporates
prologue instructions that initialize the values of general-
purpose registers. These instructions set up the execution
environment before the instruction stream is executed. The
epilogue instructions are responsible for saving the register
values onto the stack and writing them into a file. This allows
for later comparison to determine if the tested instruction
stream exhibits inconsistency. At the system-level, we employ
a master-slave architecture to facilitate the testing process and
capture the results. The slave machine executes the instruction
streams within a kernel module, while the master machine
operates the kgdb debugger to capture the system state. The
prologue instructions initialize the system state before exe-
cuting instruction streams. The epilogue instructions delegate
system control to kgdb after executing instruction streams,
enabling the capture of the system state for subsequent analysis
and comparison. This approach allows us to effectively test and
analyze the system-level behavior of the instruction streams.

We implement a prototype system called EXAMINER PRO,
which consists of a test case generator and a differential
testing engine. Our test case generator generated 2, 774, 649
instruction streams that cover all the 1, 998 Arm instruction
encodings in four instruction sets (i.e., A64, A32, T32, and
T16). On the contrary, the same number of randomly generated
instruction streams can only cover 54.5% instructions encod-
ings, which shows the sufficiency of our test case generator.
We then feed these test cases into our differential testing
engine. In user-level, by comparing the result between the
state-of-the-art emulator (i.e., QEMU [18]) and real devices
in different architectures (ARMv5, ARMv6, ARMv7, and
ARMv8), our system detected 171, 858 inconsistent instruction
streams, which cover 26.6% of the instruction encodings. To
further verify the capability of EXAMINER PRO in locating
inconsistent instructions at the system-level, we execute the
test cases within the kernel module and compare the results ob-
tained from QEMU and real devices using different instruction
sets (T16, T32, A32, and A64). EXAMINER PRO successfully
identifies 60, 630 inconsistent instruction streams, covering
33.0% of the instruction encodings. To demonstrate the gener-
alization of EXAMINER PRO, we extend its application to two
additional CPU emulators(i.e., Unicorn [19] and Angr [20])
and 223, 264 and 120, 169 inconsistent instructions are located,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

respectively. We then explore the root causes. It turns out
that implementation bugs and the undefined implementation
in the Arm manual are the major causes. We discovered 15
bugs (7 in QEMU [39], [40], [41], [42], [43], [44], [45], 3
in Unicorn [46], 5 in Angr [47], [48], [49], [50], [51]) in
emulators and all of them have been confirmed by developers.
Furthermore, 2 bugs in real devices (Raspberry Pi 2B and
Raspberry Pi 4B) are also explored. These bugs can influence
commonly used instructions (e.g., BLX) and can even crash the
emulators (e.g., QEMU and Angr).

To show the usefulness of our findings, we further build
three applications, i.e., emulator detection, anti-emulation, and
anti-fuzzing. By (ab)using inconsistent instructions, a program
can successfully detect the existence of the CPU emulator
and prevent the malicious behavior from being monitored.
In addition, when conducting fuzzing within an emulator,
instrumenting the program with inconsistent instructions can
significantly reduce the coverage ratio of the fuzzing process,
which further reduce the attack surfaces. Note that we only
use these applications to demonstrate the usage scenarios of
our findings. There may exist other applications. In summary,
our work makes the following main contributions.
Sufficient test case generator We propose a test case
generator by introducing the first symbolic execution engine
for Arm ASL code. It can generate representative instruction
streams that sufficiently cover different instructions (encod-
ings) and their semantics.
Effective prototype system We extend our prototype sys-
tem, named EXAMINER [52], to EXAMINER PRO. EXAMINER
PRO comprises a test case generator and a differential testing
engine at both user and system levels. Our experiments showed
that EXAMINER PRO is general and can automatically locate
inconsistent instructions across different privileges (i.e., user-
level and system-level).
New findings We explore and report the root cause of the
inconsistent instructions. Implementation bugs of emulators
and undefined implementation in Arm manual are the major
causes at both user and system levels. 17 bugs are discovered
while 15 of them have been confirmed. Some of them influence
commonly used instructions (e.g., BLX) and can make the
emulators crash.

To engage with the community, we release the source code
of our system in https://github.com/valour01/examiner.

II. BACKGROUND AND MOTIVATION

A. CPU Emulators

CPU emulators usually support multiple CPU architectures.
When executing an instruction stream, the emulator first de-
codes the instruction stream and converts it into intermediate
representations (IR). After generating the IR, emulators like
QEMU will further translate the IR into host machine instruc-
tions, which will be executed on the host machine directly.

The emulators usually work in two different privileges,
user-level and system-level. At the user-level, emulators are
capable of launching processes that are compiled for one CPU
on another CPU. The host machine provides an operating
system, allowing for the use of system calls and POSIX

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt Imm8
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  11 10  9   8   7   6   5   4   3   2   1   0

1 P U W

(a) The encoding schema of the STR (immediate) instruction in
Thumb-2.

1 if Rn == ’1111’ || (P == ’0’ && W == ’0’) then
UNDEFINED;

2 t = UInt(Rt);
3 n = UInt(Rn);
4 imm32 = ZeroExtend(imm8, 32);
5 index = (P == ’1’);
6 add = (U == ’1’);
7 wback = (W == ’1’);
8 if t == 15 || (wback && n == t) then UNPREDICTABLE;

(b) The ASL code for decoding the instruction.

1 offset_addr = if add then (R[n] + imm32) else (R[n] -
imm32);

2 address = if index then offset_addr else R[n];
3 MemU[address,4] = R[t];
4 if wback then R[n] = offset_addr;

(c) The ASL code for executing the instruction.

Fig. 1: A motivation example.

signals. Unicorn, which is based on QEMU, provides friendly
APIs for building different tools. It aims to emulate CPU
operations only and remove other supports, such as signals, to
keep it lightweight. Other binary frameworks, such as Angr,
also support CPU emulation where users can specify the entry
address and execute the target instructions step by step.

At the system-level, emulators provide a virtual model
of an entire machine, including the CPU, memory, and I/O
peripherals, to run a guest OS. The CPU can be fully emulated
or work with a hypervisor such as KVM or Xen. The latter
is known as CPU virtualization, which executes most of the
guest code directly on the host CPU and only emulates the
instructions that cannot be executed natively on the host. Due
to the fact that most instructions are run directly on the host,
CPU virtualization is out of the scope of this paper.

B. Motivation

EXAMINER PRO can be used to find inconsistent instruc-
tions in both user-level and system-level. The inconsistent
instructions can be automatically used in many scenarios
(Section IV-F). We illustrate how EXAMINER PRO can de-
tect inconsistent instructions and identify bugs in emulators
through a motivation example, and highlight the necessity of
extending the differential testing engine to system-level with
an inconsistent example detected at system-level.

1) The Encoding Schema and Semantics: Fig. 1 shows
one of the encoding schemas of instruction STR (immediate)

and the corresponding ASL code for decoding and execution
logic. According to the encoding schema in Fig. 1a, the
value is constant (i.e., 111110000100 and 1) for offset [31:20]
and [11:11]. The values in other offsets include 6 encoding
symbols and they are Rn, Rt, P, U, W, and Imm8.

Fig. 1b shows the decoding ASL code. Note that the ASL
code is simplified for presentation. The complete code can be
found on the official Arm site [53].
• In Line 1, the symbol Rn, P, and W will be checked. If the

condition is satisfied, the instruction stream will be treated

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

as an UNDEFINED one. Consequently, a SIGILL signal or
undefined instruction exception will be raised by emulators.

• In line 2 and 3, the symbol Rt and Rn will be converted to
unsigned integer t and n, respectively. Similarly, the symbol
imm8 will be extended into a 32-bit integer imm32. In line
5, 6, and 7, symbol index, add, and wback will be assigned
according to the value of P, U, and W, respectively.

• In line 8, the symbol t, wback, and n will be checked.
If the condition is satisfied, the instruction stream should
be treated as UNPREDICTABLE. According to Arm’s manual,
the behavior of an UNPREDICTABLE instruction stream is not
defined. The processor vendors and the emulator developers
can choose an implementation that they think is proper.
Similarly, Fig. 1c shows the ASL code for the execution

logic of the instruction. The ASL code in Fig. 1b and Fig. 1c
defines the semantics of the instruction.

2) Test Case Generation: By analyzing the encoding
schema, EXAMINER PRO generates the test cases by mutating
the non-constant fields, including Rn, Rt, P, U, W and Imm8.
This can generate syntactically correct instructions. However,
this step is not enough, since it may not generate the values
that satisfy the conditions in the ASL code. For instance, one
constraint in line 8 of Fig. 1b is t == 15. The random values
generated in the first step may not satisfy this expression (Rt is
not equal to 15). To this end, we leverage a constraint solver to
find the concrete value of Rt that satisfies the constraint, i.e.,
15. We take similar actions to solve the constraints for other
symbols in line 1 (add), 2 (index) and 4 (wback) of Fig. 1c.
To cover different execution paths of ASL code, we will also
solve the negations of the constraints. During this process, we
generated 576 instruction streams as test cases in total.

3) Differential Testing: We feed each instruction stream
into our differential testing engine (Section III-C), which adds
prologue and epilogue instructions. The prologue instructions
first set the initial execution context before executing the
instruction stream. After the instruction stream is executed,
the epilogue instructions will dump the result for comparison.
We then execute these instructions on both emulators and real
devices (e.g., RasberryPi 2B). By comparing the execution
result, we confirm that 0xf84f0ddd is an inconsistent instruc-
tion stream. Specifically, It will generate a SIGILL signal in
a real device while a SIGSEGV signal in QEMU. We further
analyzed the root cause and successfully disclosed a bug in
QEMU [40]. According to Fig. 1a, the concrete value of Rn

of the instruction stream 0xf84f0ddd is 1111. As shown in the
ASL code (line 1) in Fig. 1b. it is an UNDEFINED instruction
stream. However, QEMU does not properly check this condi-
tion. Fig. 2 shows the (patched) function (i.e., op_store_ri)
in QEMU for decoding the instruction STR (immediate). It
continues the decoding process directly from line 12 without
any check. We then submit this bug to QEMU developers and
the patch is issued (as shown in line 8-10).

4) System-level Extension: System-level emulators are
wildly employed in different applications such as hardware
simulation and modeling [54], [55], and dynamic malware
analysis systems [56], [4]. Therefore, it is crucial to thor-
oughly test them. Meanwhile, the original EXAMINER cannot
test the instructions in privilege mode (system-level). In this

1 static bool op_store_ri(DisasContext *s, arg_ldst_ri
*a, MemOp mop, int mem_idx)

2 {
3 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a

->w) | ISSIsWrite;
4 TCGv_i32 addr, tmp;
5
6 // Rn=1111 is UNDEFINED for Thumb;
7
8 + if (s->thumb && a->rn == 15) {
9 + return false;

10 + }
11
12 addr = op_addr_ri_pre(s, a);
13
14 /*omitted QEMU code*/
15
16 return true;
17 }

Fig. 2: Original code of QEMU and the patch for function
op store ri, which aims to translate STR instruction

(a) The bit assignments in CPACR system control register

1 CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check,
boolean advsimd)

2 // In Non-secure state, Non-secure view of CPACR and
HCPTR determines behavior

3 cpacr_cp10 = CPACR.cp10;
4 cpacr_cp11 = CPACR.cp11;
5 cpacr_asedis = CPACR.ASEDIS;
6 ...
7 if !HaveVirtExt() || !CurrentModeIsHyp() then
8 if cpacr_cp10 != cpacr_cp11 then UNPREDICTABLE;
9 case cpacr_cp10 of

10 when ’00’ UNDEFINED;
11 when ’01’ if !CurrentModeIsNotUser() then

UNDEFINED;
12 when ’10’ UNPREDICTABLE;
13 when ’11’ // CPACR permits access;
14 // If the Advanced SIMD extension is specified,
15 // check whether it is disabled.
16 if advsimd && cpacr_asedis == ’1’ then UNDEFINED;
17 ...

(b) Related Pseudocode details of enabling the Advanced SIMD
Extensions.

Fig. 3: A practical example at system-level.

case, a system-level extension is necessary. Note that the
EXAMINER cannot be directly applied to the system-level due
to several challenges encountered (Section III-C3). Thus, we
propose EXAMINER PRO that supports locating inconsistent
instructions at both user-level and system-level and illustrate
a practical example of inconsistent instructions, based on a
real defect detected by EXAMINER PRO.

According to the ARMv7-A reference manual [53], ad-
vanced SIMD instructions accessed from system-level are
undefined instructions when the ASEDIS bit in the CPACR
system control register is set to 1, as represented in line
16 of Fig. 3b. We configure the kernel with the ASEDIS
equal to 1 and tested SIMD instructions such as VMAX and
VADD on both emulators and real devices at the system-
level. The QEMU system-level emulator, i.e., qemu-system-
arm, does not completely adhere to the specification and not
honour CPACR.ASEDIS, executing the instructions normally.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Test Case 
GeneratorASL Instruction

Streams
Differential 

Testing Engine
Inconsistent 
Instructions

Fig. 4: The work flow of our system

In contrast, the real device was trapped in the undefined excep-
tion handler. The incomplete implementation in the emulator
resulted in inconsistency between real devices and system-
level emulations.

III. DESIGN AND IMPLEMENTATION

Figure 4 shows the workflow of EXAMINER PRO, which
consists of a test case generator and a differential testing
engine. First, the test case generator retrieves the ASL code to
generate the test cases (Section III-B). Then, the differential
testing engine receives the generated test cases and conducts
differential testing between the emulators and real devices
(Section III-C). The instructions leading to different execution
results are identified as inconsistent instructions. We further
analyze the identified inconsistent instructions to understand
the root cause of them and how they can be (ab)used.

A. Challenges

Locating the inconsistent instructions at both user-level and
system-level is not easy.

First, Arm architecture has multiple versions (e.g., ARMv5,
ARMv6, ARMv7, and ARMv8), different register widths (32
bits or 64 bits) and instruction sets. Besides, it has mixed
instruction modes (Arm, Thumb-1, and Thumb-2). Thus, how
to generate sufficient instruction streams, which denote the
bytecode of an instruction, to cover these variants is the first
challenge. Note that if we naively enumerate 32-bit instruction
streams, the number of test cases would be 232, which is
inefficient to be evaluated. Meanwhile, randomly generated in-
struction streams are not representative and many instructions
are not covered (Section IV-A). Second, for each test case,
we should provide a deterministic environment to execute the
single instruction stream and automatically compare the result
after the execution. This requires us to set up the same CPU
state and disable all the effect of asynchronous events before
the execution and compare the state afterwards.

To extend the testing to system-level and ensure the capa-
bility of EXAMINER PRO, we have the following two more
challenges. Third, a new architecture is needed to maintain
complete control over the tested machine at system-level,
allowing for inspection of its state at the system-level at
any time, even in the event of fatal exceptions. We adapted
the master-slave architecture proposed by previous work [57]
to Arm architecture and set the tested machines in kernel
debugging mode so that they can be completely frozen when
necessary. Last but not least, some testing instructions may
lead the tested machines into unusable states (e.g., kernel
panic) at system-level, from which it would be impossible
to regain the control without a reboot. Rebooting is time-
consuming and requires manual intervention when system
crashes. Thus, a customized kernel with modified exception
handler routine is needed. The customized kernel is supposed

to catch the triggered exception and enable the execution of
the next test case instead of terminating the testing process.

B. Test Case Generator

In theory, for a 32-bit instruction, there exist 232 =
4, 294, 967, 296 possible instruction streams, which is too
large for exhaustive exploration. In our work, we need to
generate representative test cases that cover most behaviors
of an instruction.

Specifically, we first parse the encoding schema to retrieve
the encoding symbols and then infer the type for symbols,
e.g., a register index or an immediate value. After that, we
generate an initialized mutation set with pre-defined rules,
which are shown in Table I, for each type of symbol. For
instance, we generate the maximum, minimum and random
values for an immediate value. Then, we develop a symbolic
execution engine to solve the constraints in the ASL code for
the decoding and execution logic. This step can add more
values to the mutation set to satisfy the constraints in the
ASL code. At last, we generate instruction streams based on
the values of encoding symbols. Note that we generate test
cases based on Arm specifications, covering both privileged
and unprivileged instructions. Thus, the generated test cases
are suitable for both user-level and system-level.

Algorithm 1 shows how we generate the test cases. For each
instruction, Arm provides an XML file to describe the instruc-
tion. We extract the encoding schemas and the corresponding
ASL code for decoding and execution by parsing the XML
file. We first retrieve the encoding symbols (Symbols) and
constant values (Constants) in the encoding schema, as well
as Constraints in ASL code (line 2). We then iterate over
the Symbols and generate the MutationSet for each symbol
(line 3-4), which will be introduced in detail in Section III-B1.
Note this is the initial mutation set for each symbol. For
the Constants, the MutationSet contains only the fixed
value (line 5-6). After that, we solve the constraints and their
negations to generate a new mutation set (i.e., V alueSet) for
each symbol (line 7-8), which will be introduced in detail
in Section III-B2. Then we check whether the solved value
for each symbol is in the symbol’s MutationSet (line 9). If
not, we append it to the symbols’ MutationSet (line 10-11).
After that, we combine the MutationSet of both symbols
and constants to get the MutationSets (line 12). Finally,
considering all the possible combinations of the candidates in
the MutationSet for each symbol, we conduct the Cartesian
Product on the MutationSets to get the test cases (line 13).

1) Initialize Mutation Set: In the phase of initializing the
mutation set, we consider the types of different symbols and
aim to cover different values according to their types. In
particular, we infer the type based on the symbol name. For
instance, a symbol that represents a register index usually has
the name Rd, Rm, Rn, etc. As for the immediate value, the
symbol name is usually immn where n represents the length of
the value. For example, the symbol imm8 represents an 8-bit
immediate value.

Table I shows the rules to initialize the mutation set. For a
register index, we include the PC register (index 15), R0, R1,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Algorithm 1: The algorithm to generate test cases.
Input: The encoding diagram: I Encode;
The decoding ASL code: I Decode;
The execution ASL code: I Execute
Output: The generated test cases: T ;

1 Function Generate(I Encode,I Decode,I Execute):
2 Symbols, Constants, Constraints = ParseASL(I Encode,

I Decode, I Execute)
3 for S in Symbols do
4 S.MutationSet = InitSet(S)

5 for C in Constants do
6 C.MutationSet = [ConstantValue]

7 for C in Constraints + NegatedConstraints do
8 ValueSet = SolveConstraint(C, Symbols, I Decode,

I Execute)
9 for V, S in V alueSet do

10 if V not in S.MutationSet then
11 S.MutationSet add V

12 MutationSets = [S.MutationSet +C.MutationSet]
13 TestCase = CartesianProduct(MutationSets)
14 return T

TABLE I: The rules of initializing the mutation set.

Type of Symbol Name Mutation Set
Register Index 0 (R0); 1 (R1); 15 (PC); Random index values

Immediate Value in N bits Maximum value: 2ˆN -1; Minimum value: 0;
(N-2) Random Value from the enumerated values

Condition ”1110” (Always execute)
Others in 1 bit ”0”; ”1”

Others in N bit (N >1) N random value from the enumerated values

and random values in the set. The register R0 and R1 are used
to represent the return value for function calls. As for the PC,
it can explicitly change the execution flow of the program.
Thus, the register index in many instruction encodings cannot
be 15. We include it in the mutation set to cover such cases.
Note that we do not mutate 5-bits general purpose registers
in AArch64. This decision is based on the fact that there is
no such register like PC that can change the execution flow
in AArch64. Meanwhile, the eight registers from X0 to X7 can
all be used to represent return values in AArch64. Mutating
these registers may result in redundant test cases. The results
of covered constraints and QEMU source code coverage in
Section IV-A demonstrate that this choice is adequate. For the
immediate value, the maximum and minimum value are the
two boundary values that need to be covered. Apart from this,
we randomly select (N-2) values, where N represents the bit
length of the symbol. Note that enumerating all the values
for one symbol is not realistic because immediate values may
have up to 24 bits, resulting in 224 = 16777216 candidates.

2) Solve Constraints: The execution paths of the ASL code
depend on whether the constraints are met or not, which is
decided by the value of encoding symbols. To make our test
case representative, the generated test cases should cover as
many paths as possible. To this end, we design and implement
a symbolic execution engine for the ASL code. Specifically,
we assign symbolic values for encoding symbols. Then we
generate the symbolic expressions according to the ASL code.
After that, we retrieve the constraints including the symbolic
expression and feed them to SMT solvers. In this case, we can

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd Rm
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  11 10  9   8   7   6    5   4   3   2   1   0

0   0   0   x AlignSize

Type

(a) Encoding diagram of instruction VLD4 in A32 instruction set

1 case type of
2 when ’0000’
3 inc = 1;
4 when ’0001’
5 inc = 2;
6 if size == ’11’ then UNDEFINED;
7 alignment = if align == ’00’ then 1 else 4 << UInt(

align);
8 ebytes = 1 << UInt(size);
9 elements = 8 DIV ebytes;

10 d = UInt(D:Vd);
11 d2 = d + inc;
12 d3 = d2 + inc;
13 d4 = d3 + inc;
14 n = UInt(Rn);
15 m = UInt(Rm);
16 wback = (m != 15);
17 register_index = (m != 15 && m != 13);
18 if n == 15 || d4 > 31 then UNPREDICTABLE;

(b) Decoding code of instruction VLD4 in A32 instruction set

Fig. 5: Test case generator example.

find the concrete values of the encoding symbols that satisfy
or not satisfy the constraint.

Figure 5 shows a concrete example. In line 18, there is
a symbolic expression d4 and a constraint d4 > 31. All
the related statements (line 3, 5, 10, 11, 12, and 13) are
retrieved via backward slicing and highlighted in the green
color. To solve this constraint, we conduct backward symbolic
execution. Specifically, the symbol d4 is calculated by the
expression d4 = d3 + inc in line 13. Thus, the constraint is
converted to d3+ inc > 31. Given the relationship between d3

and d2 in line 12, and between d2 and d1 in line 11, we further
convert it to UInt(D : V d) + 3 × inc > 31. The expression
UInt(D:Vd) is converted to V d+24×D as the symbol Vd has
4 bits. Thus, we have the constraint V d+16×D+3×inc > 31.
Symbol inc is assigned at line 3 or line 5. Thus, the constraint
is inc == 1 or inc == 2. Apart from this, we need to
consider the length of each symbol. Since D is one bit and
V d has four bits. Their constraints are D ≥ 0 and D < 2,
V d ≥ 0 and V d < 16.

We feed all these constraints to the SMT solver. It returns
one solution that V d is 13, D is 1, and inc is 2. We then
negate the constraint d4 > 31 and repeat the above-mentioned
process. In this case, the solution is V d is 0, D is 0, and inc

is 1. Thus, the generated V alueSet contains three symbols
and each symbol has two candidate values. Note inc’s value
depends on Type’s value. As we will also solve the constraint
Type == ‘0000’ and Type == ‘0001’, the final mutation set
of Type must contain the value that can make inc to be either
1 or 2. Due to the Cartesian Product between each symbol’s
mutation set, we can always generate the instruction streams
that can satisfy the constraint d4 > 31 and its negation.

More formally, given the ASL program P with a set of
statements S and the encoding symbols V , we create the
symbolic state S0 with symbolic values for the encoding
symbols. For each statement S i in S, we update the S0
by symbolically executing S i in reverse and generating
constraints on the encoding symbols V based on the effect

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

of S i. When there are no further constraints to be generated
in the reverse direction, we solve the constraints and their
negations for the encoding symbols V and append them to
their mutation set accordingly.

Note that path explosion, a common issue in traditional
programming languages during symbolic execution, is not a
concern in ASL. This is attributed to three key factors: (1)
The source code of ASL tends to be relatively simple. (2)
The decoding and execution of ASL code impose limited
constraints, consequently leading to a restriction in the number
of paths. (3) ASL code features a limited number of function
calls. However, most of them contribute little to the choice of
instruction stream generation. In this case, we model these
utility functions (e.g., UInt) to prevent the propagation of
symbols into these functions.

Our experiment in Section IV-A shows that we can generate
all the test cases within 4 minutes.

C. Differential Testing Engine

1) Model the CPU: The differential testing engine receives
the generated instruction streams, and detects inconsistent
ones. Formally, given one instruction stream I , we denote the
state before the execution of I as the initial state CPUI and
the state after the execution of I as the final state CPUF .

In user-level testing, we denote the CPU T ’s initial state
CPUI(T ) with the tuple < PCT , RegT ,MemT , StaT >.
PC denotes the program counter, which points to the next
instruction that will be executed. Reg denotes the registers
used by processors, while Mem denotes the memory space
that the tested instruction I may write into. Note we do not
consider the whole memory space as comparing the whole
memory space is time- and resource-consuming. Sta denotes
the status register, which is APSR in Arm architecture. We
denote the CPU T ’s final state CPUF (T ) with the tuple
[PCT , RegT ,MemT , StaT , SigT ]. Inside CPUF (T ), all the
other attributes have the same meanings as they are inside
CPUI(T ) except Sig. Sig denotes the signal or exception that
the instruction stream I may trigger. If no signal or exception
is triggered, the value of Sig is 0.

At the system-level testing, we model the CPU states
with user registers, system status, memory, and exceptions.
Similarly, we denote CPU T ’s initial state in system-level
CPUS

I (T ) with the tuple < PCT , RegT ,MemT , Sta
S
T >.

Inside CPUS
I (T ), all the other attributes have the same

meanings as they are inside CPUI(T ) except RegT and
StaST . RegT excludes SP due to the fact that test cases
at system-level may use a different value of SP, which is
managed by the kernel and may be inconsistent between
emulators and real devices. StaST denotes the status register
in system mode, which is CPSR in Arm architecture. We
ignore the other system registers, which are supposed to be
consistent after the system initialization. We denote the CPU
T ’s final state in system level CPUS

F (T ) with the tuple
[PCT , RegT ,MemT , Sta

S
T , ExceptT ]. Inside CPUS

F (T ), all
the other attributes have the same meanings as they are inside
CPUS

I (T ) except ExceptT . ExceptT denotes the exception
that the instruction stream I may trigger in system mode,

which is undefined instruction, data abortion, prefectch abor-
tion and supervisor call in Arm architecture. If no signal or
exception is triggered, the value of ExceptT is 0. Note that
IRQ and FIQ interrupts are disabled to guarantee deterministic
execution. Thus, no IRQ nor FIQ interrupts would be triggered
during testing.

Given the CPU emulator E, the real device R, our differen-
tial testing engine guarantees that E’s initial state CPUI(E) is
equal to R’s initial state CPUI(R). CPUI(E) = CPUI(R)
iff:

∀ϕ ∈< PC,Reg,Mem,Sta >: ϕE = ϕR

After the execution of I , I is treated as an inconsistent
instruction stream if the final state CPUF (E) is not equal to
the R’s final state CPUF (R). More formally, CPUF (E) ̸=
CPUF (R) iff:

∃ϕ ∈ [PC,Reg,Mem,Sta, Sig] : ϕE ̸= ϕR

We can identify inconsistent instruction streams at the
system-level in a similar way by verifying whether the final
state of the CPU emulator, CPUS

F (E), equals the final state of
the real device, CPUS

F (R), when their initial states CPUS
I (E)

and CPUS
I (R) are the same.

2) User-level Strategy: To conduct the differential testing
at user-level, we insert prologue and epilogue instructions. We
first register the signal handlers to capture different signals. To
make the initial state consistent, we set the value of general
purpose registers to zero except PC. After setting up the initial
state, an instruction stream will be executed. Then we dump
the CPU state either after the execution or in the signal handler
so that we can compare the execution result. For registers
including status register (i.e., APSR), we push them on the
stack and then write them into a file. For the memory, we
utilize Capstone [58] to extract the target memory address that
the instruction will be written into. After that, we load the
target address, and push it on the stack for later inspection.
Note that the number of memory write instructions is limited.
We manually check the effectiveness of Capstone in analyzing
these instructions and find it to work well. Finally, we compare
the result collected from the emulator and a real device. If
the instruction stream results in a different CPU final state,
(CPUF (E) ̸= CPUF (R)), it will be treated as an inconsistent
instruction stream.

3) System-level Strategy: As mentioned before, freezing the
system state and recovering from fatal exceptions in system-
level can be challenging. We adapted the master-slave archi-
tecture proposed by previous work [57] to Arm architecture
and customized the kernel to test instructions in system-level.
Specifically, the differential testing engine in EXAMINER PRO
at system-level is composed of the following modules as
shown in Fig. 6: (1) a master machine with gdb to schedule
test case execution, freeze and capture system states on the
tested machines (slaves); (2) tested machines with customized
kernels and kgdb to execute the test cases in kernel module;
(3) serial ports that connect the slaves to the master.
Customized kernel. We used the Linux kernel and cus-
tomized the kernel in two steps. First, we modified the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 6: The architecture of differential testing engine at system-level

exception handlers in the kernel. Specifically, we disabled
the kernel panic function in the handlers, which causes the
system to abort, and updated the program counter of the
occurred exception to the next instruction. Thus, if a fatal
exception is triggered, the testing process would be trapped
to the specific exception handler, return from the handler,
and execute the next instruction. Second, we enable kernel
debugging in the kernel configuration and compile the kernel
with the -mfloat-abi=softfp compilation flag to enable
the floating point instructions. In this way, we could freeze the
system state through kgdb and test floating instructions.

Test case template. For each test case, we generated a ker-
nel module template with prologue and epilogue instructions
inserted around the testing instruction stream, similar to the
user-level strategy. To ensure the initial state consistency in
system-level, we set the value of all general purpose registers
to zero, except PC as user-level, and set the mask bits in
the status register CPSR to disable asynchronous exceptions.
After initialization, we insert a kgdb breakpoint to dump the
CPU initialization state at system-level. Then we proceed
to test the actual test instruction stream and insert another
kgdb breakpoint to dump the CPU final state. We also set
breakpoints in exception handlers to intercept the exception
triggered by the tested instruction. For efficiency, we compiled
every 100,000 test instructions into one kernel module and
reuse the prologue and epilogue instructions.

Testing flow. The testing flow of the differential engine in
system-level is illustrated in Fig. 7. The master maintains a
debugger, i.e., gdb, that issues commands to and transfers
data back from the slaves. 1⃝At the beginning, the slave boots
the customized system and signals its readiness to the master.
2⃝Then the master sets up the dump directory and sets the

breakpoints to dump the system state when testing. 3⃝Next, the
master releases the slave, which then loads the kernel module.
4⃝Finally, the tested instruction streams in the kernel module

are tested one by one in terms of rounds. In each round, the
master interacts with the slave in three main phases. First, the
master sets PC to the current testing instruction by calculating
the instruction offset. Second, the master releases the slave,
which then executes the test case’s initialization code and is
intercepted by the first breakpoint. Third, the slave executes the
actual instruction being tested and is intercepted by the second
breakpoint. The master dumps this final state, either when the
instruction finishes execution or at exception handlers, and
uses it to determine whether the tested instruction streams are
inconsistent between emulators and the real device.

Fig. 7: The testing flow at system-level

D. Implementation Details

We implement EXAMINER PRO in Python, C and Arm
assembly. In particular, we implement the test case generator
in Python. We parse the ASL code, extract the lexical and
syntactic information with regular expressions. We use Z3 [59]
as the SMT solver to solve the constraints. The differential
testing engine is implemented in C and assembly code with
some glue scripts in Python. Specifically, the initial state setup
is implemented with inline assembly code. The execution
result dumping is implemented with inline assembly code at
the user-level and with the use of gdb scripts at the system-
level. In total, EXAMINER PRO contains 5, 074 lines of Python
code, 220 lines of C code, and 200 lines of assembly code and
adds another 723 lines of Python code, 277 lines of C code
with inline assembly, and 351 lines of gdb scripts for extending
to system-level testing.

IV. EVALUATION

In this section, we evaluate EXAMINER PRO by answering
the following six research questions.
• RQ1: Is EXAMINER PRO able to generate sufficient test

cases?
• RQ2: Is EXAMINER PRO able to detect inconsistent in-

structions at user-level? What are the root causes of these
inconsistent instructions?

• RQ3: Is EXAMINER PRO able to detect inconsistent instruc-
tions at system-level? What are the root causes of these
inconsistent instructions?

• RQ4: What is the difference between inconsistent instruc-
tions detected by EXAMINER PRO at user-level and system-
level?

• RQ5: Is EXAMINER PRO general to be applied to the other
emulators?

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE II: The statistics of the syntactically correct generated instruction streams. ”EXAMINER PRO ” denotes the number of generated
test cases by our test case generator. ”Random” denotes the number of randomly generated test cases. ”Symbol Random” denotes the test
case generator with symbolic execution turned off and a few additional random values chosen for symbols. Note that one instruction may
have different instruction encodings for different instruction sets. The total number of instructions for A32, T32, and T16 is 489.

Instru-

ction

Set

Time(s) of EXANI-

NER Pro, Random,

/ Symbol Random

Instruction Stream Instruction Encoding Instruction Covered Constraints

EXAMINER

Pro
Random Symbol

Random

EXAMINER

Pro
Random Symbol

Random

EXAMINER

Pro
Random Symbol

Random

EXAMINER

Pro
Random Symbol

Random

A64 70.51, 56.18, 1.54 1,041,355 421,645 573,977 837 266 839 579 178 581 3,430 935 3,061

A32 75.05, 40.43, 1.03 949,704 582,849 641,995 550 415 550 481 360 481 5,318 3,716 4,935

T32 74.58, 37.90, 0.89 873,921 34,598 478,143 530 351 531 450 283 451 5,008 3,203 4,675

T16 2.32, 0.044, 0.023 928 796 890 77 57 78 67 49 68 120 84 107

Overall 222.46, 134.55, 3.48 2,865,910 1,039,890 1,695,006 1,994 1,088 1998 1,070 550 1,070 13,875 7,938 12,778

• RQ6: What are the possible usage scenarios of inconsistent
instructions?

A. Sufficiency of Test Case Generator (RQ1)
We generate the test cases according to the ARMv8-A man-

ual, which introduces ASL. Specifically, the manual includes
four different instruction sets. In AArch 64 mode, the A64
instruction set is supported. For the AArch 32 mode, it consists
of three different instruction sets. They are ARM32 with 32-
bit instruction length (A32), Thumb-2 with instruction length
of mixed 16-bits and 32-bits (T32), and Thumb-1 with 16-bit
instruction length (T16). They are also supported by previous
Arm architectures (e.g., ARMv5, ARMv6, ARMv7). To locate
the inconsistent instructions in different Arm architectures, we
generate the test cases for all the instruction sets.

The number of generated test cases is sufficient. Table II
shows the statistics of the generated instruction streams. Note
that we repeat the generation process 10 times and calculate
the average value to eliminate randomness. In total, 2, 865, 910
instruction streams are generated within 4 minutes, which
cover 1, 994 instruction encodings in 1, 070 instructions. Note
that the total number of instruction encodings and instructions
in Arm manual is 1, 998 and 1, 070, respectively. In addition,
the total number of constraints (including their negation) for
A64, A32, T32, and T16 is 3, 690, 5, 838, 5, 682, and 174,
respectively. This shows that our test cases can cover 93.0%,
91.1%, 88.1%, and 69.0% of the constraints, respectively. Note
that the generated instruction streams are rather small for T16
due to the small number of instruction encoding schemes and
limited instruction length. Overall, all the generated instruction
streams are syntactically correct, which means they all map
to one of the encoding schemas. Furthermore, more than 13
thousand constraints and their negations, which are related to
encoding symbols, are solved, indicating the multiple behav-
iors of the instructions are explored.

To further demonstrate the effectiveness of the test case
generator, we compare it with two different strategies: (1) ran-
domly generating test cases for each instruction set (random
strategy); (2) using a test case generator with symbolic execu-
tion turned off and a few additional random values chosen for
the symbols (symbol random strategy). The random strategy
compares the performance of our generator with those used
in existing literature [33], [34]. The symbol random strategy
provides insight into the significance of symbolic execution.

We generate test cases of the same order of magnitude for
all three strategies to ensure a fair comparison. Specifically,
we produce the same number of test cases as our test case
generator for the other two strategies. We do not allocate
the same time budget here, as the number of instructions
generated by these two strategies would substantially increase,
resulting in time-consuming testing for a potential slight per-
formance improvement. Additionally, all strategies are capable
of generating test cases for four instruction sets within five
minutes. Note that randomly generated instructions may not
be syntactically correct, leading to variance in the number of
valid instructions. To eliminate the effects of randomization in
these two strategies, we also repeat the generation process for
10 times and report the average value in Table II. We calcu-
late how many instruction encodings, how many instructions,
and how many constraints are covered by these instruction
streams for these two strategies. According to the Column
”Random” in Table II, only 36.3% ( 1,039,8902,865,910 ) generated in-
struction streams are syntactically correct, which means all
the others are illegal instructions and they are not effective to
test the potential different behaviors between real devices and
CPU emulators. Among the syntactically correct instruction
streams, the randomly generated instruction streams can only
cover 54.5% instruction encodings and 51.4% instructions.
Nearly a half of instructions can not be covered with the
randomly generated instruction streams. The Column ”Symbol
Random” in Table II shows that, although symbol random can
encompass all instruction encodings and instructions, it only
covers 92% of the constraints that our test case generator can
address. We report p-values to show the significant difference
between our test case generator and the other two strategies.
The p-values between our test case generator and the random
strategy are 1.44 × 10−4, 1.63 × 10−4, and 1.47 × 10−4

for instructions, instruction encoding, and covered constraints,
respectively. The p-values between our test case generator and
the symbol-random strategy are 4.77 × 10−5, 5.59 × 10−5,
and 1.46 × 10−4 for instructions, instruction encoding, and
covered constraints, respectively. We also utilize statistical
tests, specifically the Mann–Whitney U test with Cliff’s delta
effect size to analyze and compare our strategy with random
and symbol random strategy. There are statistically significant
improvements in instruction encoding, instruction, and covered
constraints between the random strategy and our test case
generator at A64, A32, T32, T16 (Cliff’s delta is either 1 or

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE III: QEMU code coverage across various strategies. ”User level” denotes the code coverage of qemu-arm and qemu-aarch64.
”System level” denotes the code coverage of qemu-system-arm and qemu-system-aarch64. “Combined Coverage” denotes the combined
code coverage of both ”User level” ones and ”System level” ones.

Instruction Set
Test Case Coverage

User level System level Combined Coverage

EXAMINER PRO Random Symbol Random EXAMINER PRO Random Symbol Random EXAMINER PRO Random Symbol Random

A64 20.3% 21.0% 19.9% 20.3% 19.6% 19.9% 15.2% 15.8% 14.9%

A32 50.0% 50.9% 48.2% 42.5% 41.2% 40.7% 49.1% 50.7% 47.5%

T32 57.2% 50.7% 54.4% 57.5% 47.3% 49.7% 59.3% 53.4% 56.6%

T16 13.5% 12.9% 13.5% 22.6% 22.2% 23.6% 20.1% 19.6% 20.8%

Overall 42.1% 41.4% 41.6% 42.1% 39.3% 40.2% 38.4% 37.9% 38.2%

-1). The symbol random strategy and our test case generator
also show a statistical difference in instruction encoding,
instruction, and constraints at A64, T32, T16 ( (Cliff’s delta
is either 1 or -1)).

To substantiate the claim of test sufficiency, we measure
code coverage of QEMU’s source code using test cases
generated by our symbolic execution at both system and
user level. We subsequently compare this coverage with that
achieved by randomly generated test cases and when symbolic
execution is disabled. Note that we filter out irrelevant tracing
code in QEMU and calculate the coverage only for QEMU
source code related to instruction decoding and translation.
As shown in Table III, the coverage of EXAMINER PRO is
slightly higher than that of the random and symbol random
strategies. This suggests that our test cases could cover more
situations. One possible explanation for the modest increase in
coverage is that most of the QEMU code is easy to access, and
rare unhandled situations only account for a limited portion.
Additionally, QEMU’s implementation may lack certain logic
to differentiate subtle variations in the instruction streams.
For example, QEMU does not support LDC instructions, and
all these instructions would raise an undefined exception in
QEMU, which only cover the undefined source code. The
subtle variations in the LDC would not increase the coverage
here. Note that the code coverage of QEMU is not particularly
high because there is always another mode of code, whether
in user mode or system mode, that cannot be tested. The
overall coverage ratio may appear lower when combining the
coverage of user mode and system mode due to the fact that
they can cover the same code, resulting in an increase in the
total relevant code being considered during the calculation.

Answer to RQ1: EXAMINER PRO can generate sufficient
test cases, which are all syntactical correct instruction
streams and can cover all instruction encodings and
instructions. On the contrary, 45.5% instruction encod-
ings, 48.6% instructions, and 37.4% constraints cannot be
explored by these randomly generated instructions. With
symbolic execution turned off, the generated instruction
streams only cover 92% of constraints. Furthermore, the
test cases generated by our test case generator cover a
greater portion of QEMU source code at both the user
and system levels.

1 boolean AArch32.ExclusiveMonitorsPass(bits(32)
address, integer size)

2 // It is IMPLEMENTATION DEFINED whether the
3 // detection of memory aborts happens before or
4 // after the check on the local Exclusive Monitor.
5 // As a result, a failure of the local monitor can
6 // occur on some implementations even if the
7 // memory access would give an memory abort.
8 ...
9 return

Fig. 8: Two different implementations are defined in the annotation
of function ExclusiveMonitorsPass, which is called by many instruc-
tions’ executing code

B. Differential Testing Results at User-level (RQ2)

We feed the generated test cases into our differential testing
engine to locate the inconsistent instructions at user-level.
Table IV shows the result.

Experiment Setup We conduct the differential testing be-
tween QEMU (version 5.1.0) and four real devices (OLin-
uXino iMX233 in ARMv5, RaspberryPi Zero in ARMv6,
RaspberryPi 2B in ARMv7, and Hikey 970 in ARMv8). For
ARMv5, only ARM32 is supported. Meanwhile, QEMU does
not support Thumb-2 for ARM1176 of ARMv6. Thus, we
only test the A32 instruction set on ARMv5 and ARMv6.
Thanks to the representative test cases, the differential testing
for all the test cases can be finished within 13 hours. In total,
it takes around 2700 seconds of CPU time for QEMU, which
is run on the Intel i7-9700 CPU. For the real devices, the
CPU time cost ranges from 5,276 seconds to 46,238 seconds
(13 hours), depending on the specific devices. Meanwhile,
iDEV [35] generates approximately 33 million test instruction
streams, which is ten times more than our generated test cases.
If we were to utilize those test cases, the waiting time for
results would be approximately 130 hours (roughly five days)
for the most time-consuming testing scenario. This further
demonstrate that our required time is acceptable.

Testing Result According to Table IV, 171, 858 inconsistent
instruction streams are found, owning to 6.2% of the whole test
cases. Note one instruction stream may be tested in different
architectures (e.g.,A32 instruction set in ARMv5, ARMv6, and
ARMv7), the number in column ”Overall” is the union of
the other columns. Furthermore, these inconsistent instruction
streams cover 531 different instruction encodings and 316
instructions, owning 26.6% and 29.5% of the tested instruction
encodings and instructions, respectively.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE IV: The results of differential testing for QEMU at user-level. ”CPU Time” denotes the sum of the CPU time for all test cases,
which is in seconds. We do not count the sum of CPU time for real devices as they have different CPUs. ”Inst” denotes Instruction. ”Inst S”
denotes Instruction Stream. ”Inst E” denotes Instruction Encoding. UNPRE. denotes UNPREDICTABLE. X — Y : X denotes the number
of the attribute indicated by the row name while Y denotes the percentage of dividing X by Z. For data in ”Testing Result”, Z stands for
the row ”Tested Inst S”, ”Tested Inst E”, or ”Tested Inst”. For data in and ”Root Cause”, Z stands for ”Inconsistent Inst S”, ”Inconsistent
Inst E”, or ”Inconsistent Inst”.

Architecture ARMv5 ARMv6 ARMv7 ARMv8 Overall
Experiment Setup
Instruction Set A32 A32 A32 T32&T16 A64 -
QEMU Binary qemu-arm qemu-arm qemu-arm qemu-aarch64 -
QEMU Model ARM926 ARM1176 Cortex-A7 Cortex-A72 -
Device Name OLinuXino IMX233 RaspberryPi Zero RaspberryPi 2B Hikey 970 -
CPU Time (Device) 46238.0s 6901.7s 6194.2s 5276.0s 9145.0s -
CPU Time (QEMU) 530.5s 540.6s 538.0s 462.1s 625.9s 2702.1s
Tested Inst S 870,221 870,221 870,221 809,728 1,094,700 2,774,649
Tested Inst E 550 550 550 609 839 1,998
Tested Inst 481 481 481 462 581 1,070
Testing Result The percentage is based on the number of tested instructions (streams/encodings)
Inconsistent Inst S 40,892 | 4.7% 18,043 | 2.1% 66,860 | 7.7% 51,823 | 6.4% 21,373 | 2.0% 171,858 | 6.2%
Inconsistent Inst E 184 | 33.5% 175 | 31.8% 273 | 49.6% 271 | 44.5% 17 | 2.0% 531 | 26.6%
Inconsistent Inst 173 | 36.0% 167 | 34.7% 232 | 48.2% 228 | 49.4% 15 | 2.6% 316 | 29.5%
Inconsistent Behaviors The percentage is based on the number of inconsistent instructions (streams/encodings)
Signal (Inst S) 38,480 | 94.1% 17,635 | 97.7% 66,660 | 99.7% 50,940 | 98.3% 16,656 | 77.9% 163,659 | 95.2%
Signal (Inst E) 175 170 268 267 15 521
Signal (Inst) 164 162 227 224 13 312
Register/Memory (Inst S) 2,411 | 5.9% 407 | 2.3% 199 | 0.3% 881 | 1.7% 4,716 | 22.1% 8,195 | 4.8%
Register/Memory (Inst E) 28 15 22 19 3 64
Register/Memory (Inst) 28 15 22 16 3 54
Others (Inst S) 1 | 0.0% 1 | 0.0% 1 | 0.0% 2 | 0.0% 1 | 0.0% 4 | 0.0%
Others (Inst E) 1 1 1 2 1 4
Others (Inst) 1 1 1 1 1 2

Root Cause The percentage is based on the number of inconsistent instructions (streams/encodings)
Bugs (Inst S) 1 | 0.0% 1 | 0.0% 1 | 0.0% 582 | 1.1% 1 | 0.0% 584 | 0.3%
Bugs (Inst E) 1 1 1 9 1 11
Bugs (Inst) 1 1 1 6 1 7
UNPRE. (Inst S) 40,891 | 100.0% 18,042 | 100.0% 66,859 | 100.0% 51,241 | 98.9% 21,372 | 100.0% 171,274 | 99.7%
UNPRE. (Inst E) 183 174 272 269 16 527
UNPRE. (Inst) 172 166 231 227 14 314

Inconsistent Behaviors We further analyze the inconsistent
instruction streams and categorize them according to our mod-
eled CPU. We noticed that most of the inconsistent streams
(i.e., 95.2%) will trigger different signals between the real
device and emulators. A small number of instruction streams
may not trigger the signal or trigger the same signal but have
different register or memory values (i.e., 4.8%). 2 instructions
can make QEMU crash but are executed normally in the real
devices. Thus, we categorize them as ”Others”.
Root Cause Based on the inconsistent streams, we explore
the root cause. First, there are implementation bugs. We
discovered 4 bugs in QEMU [39], [40], [41], [42] in total,
which influence 11 instruction encodings. Some of the bugs
are related to very common instructions. The first bug influ-
ences the BLX instruction [39]. The BLX instruction can be an
undefined one in specific cases, which should raise SIGILL
signal. However, QEMU does not follow the specification and
will disassemble it as a FPE11 instruction. In this case, the
whole execution logic is wrong. The second bug influence STR
instruction [40] and is illustrated in detail in Figure 2. QEMU
does not properly check the condition that the STR instruction
in thumb mode can be an undefined instruction, which result in
inconsistent execution results. The third bug influences many
load/store instructions [41] (e.g., LDRD, STRD, etc). The
target address of these load/store instructions should be word
aligned. However, QEMU does not check it properly. The last

bug is about WFI instruction [42] and it can make QEMU
crash. WFI denotes waiting for interrupt and is usually used
in system-mode emulation. However, Arm manual specifies
that it can also be used in user-space. QEMU does not handle
this instruction well and an abort will be generated. All of
the 4 bugs are confirmed and patched by QEMU developers.
This also demonstrates the capability of EXAMINER PRO in
discovering the bugs of the emulator implementation.

Apart from the bugs, most of the inconsistent instructions
are due to the undefined implementation in the Arm manual.
There are three different kinds of undefined implementa-
tions. The first one is UNPREDICTABLE (Section II-B).
UNPREDICTABLE leaves open implementation decision for
emulators and processors. The second is Constraint UNPRE-
DICTABLE. Constraint UNPREDICTABLE provides candi-
date implementation strategies and the developer or vendor
can choose from one of them. The third is that the annotation
of the ASL code signifies behavior defined by the imple-
mentation, necessitating vendors to define and document how
their implementation behaves. Figure 8 shows an example. In
the function ExclusiveMonitorsPass, which is called by the
executing code of instruction STREXH, there is an annotation
for the implementation. Note the check on the local Exclusive
Monitor would update the value of a register. Thus, if the
detection of memory aborts happens before the check, the
value of the register would not be updated while the detection

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

happens after the check can update the value, resulting in
different register value. Note that we can feed the instruction
streams into our symbolic execution engine and it will check
whether an instruction stream is UNPREDICTABLE or not
automatically. In this case, users can filter out the test cases
whose implementations are not defined and use the filtered
ones to explore the bugs of emulators. EXAMINER PRO is
proposed to find the inconsistent instructions. Thus, we include
the instruction streams that can result in UNPREDICTABLE
behavior as the test cases.

Answer to RQ2: EXAMINER PRO can detect in-
consistent instructions. In total, 171,858 inconsistent
instruction streams are found, which covers 26.6%
(i.e.,531/1998) instruction encodings and 29.5% instruc-
tions (i.e., 316/1070). The implementation bugs of QEMU
and the undefined implementation in Arm manual are the
major root causes. 4 bugs are discovered and confirmed
by QEMU developers, which influence 11 instruction
encodings including commonly used instructions (e.g.,
BLX).

C. Differential Testing Results at System-level (RQ3)
We feed the generated test cases into our differential testing

engine at the system-level to locate inconsistent instructions.
The results are shown in Table V.
Experiment Setup. We conduct the differential testing be-
tween QEMU (version 7.2.0) at system-level and two real
devices (RaspberryPi 2B in ARMv7, and RaspberryPi 4B
in ARMv8). ARMv7 is backward compatible with ARMv5
and ARMv6, with the main difference lying in processor
extensions. To optimize testing time, we focused our efforts
on the A32, T32, and T16 instruction sets on ARMv7 at the
system level.

The testing process for each instruction set on QEMU,
running on the Intel(R) Core(TM) i7-8700 CPU, took ap-
proximately 213s to 8,992s of CPU time and 3.4 hours to 90
hours of total testing time. On the other hand, testing 1,000
instruction streams on the real devices took around 13 minutes
to 30 minutes. The total time required for the entire testing
process ranged from approximately 7 to 22 days, depending on
the specific devices. To expedite the process, we ran multiple
boards of the same real devices in parallel. Note that the total
testing time was significantly longer than the CPU time due
to the additional time taken by the serial port debugging.
Testing Result. According to the data presented in Table V, we
discovered a total of 60, 630 inconsistent instruction streams,
which account for 2.3% of all the test cases conducted. These
inconsistent instruction streams cover 606 different instruction
encodings and 278 instructions, owning 33.0% and 31.7% of
the tested instruction encodings and instructions, respectively.
Note that branch instructions (e.g. B) or arithmetic instructions
which update PC or SP, would lead the testing system to
an unrecoverable state or crash. Thus, we filter out these
instructions in the experiment.
Inconsistent Behaviors. In ARMv7, most of the inconsistent
instruction streams (i.e., 84.5% and 74.5%) will trigger dif-

ferent exceptions between the real device and emulators. In
a smaller portion of cases (i.e., 15.4% and 25.3%), the in-
struction streams may not trigger an exception but still exhibit
differences in register or memory values. In ARMv8, most
of the inconsistent streams (i.e., 91.2%) will have different
register or memory values. Specifically, the inconsistency is
caused by the difference in CPSR register. Similar to RQ1,
we categorize instructions that cause QEMU to crash but are
executed normally on real devices, or vice versa, as ”Others.”

Root Cause. We analyze the root cause of these inconsistent
instructions. First, there are implementation bugs in QEMU
or real devices, whose behaviour is not cohere to Arm spec-
ification. We found out 3 bugs in QEMU [43], [44], [45], 1
bug in Raspberry Pi 2B, and 1 bug in Raspberry Pi 4B, which
influence 133 instruction encodings. The first bug we identified
in QEMU [43] is related to the unimplemented LDC instruc-
tions. QEMU does not support the Debug Communications
Channel which is specified in the Arm architecture. As a result,
when executing LDC instructions, QEMU raises an undefined
exception. In contrast, these instructions execute successfully
on the real device without triggering any exceptions. The
second bug in QEMU [44] influences many SIMD instructions
(e.g., VMAX and VADD) in specific system settings. QEMU
at the system-level does not honor the ASEDIS bit in the
CPACR register. When the system disables the SIMD instruc-
tions, QEMU still can execute these instructions successfully,
leading to inconsistent behavior between QEMU and the real
devices. The last bug we identified in QEMU [45] is related
to the configuration of two system registers, namely CCSIDR

and DBGDRAR. These registers are not properly matched in
the emulated real devices, resulting in register inconsistency
between QEMU and the real devices.

The bug we identified in Raspberry Pi 2B affects the
PLD instruction. According to the ARMv7 manual, the PLD
instruction is a memory system hint and can be treated as a
NOP without affecting the functional behavior of the device.
However, Raspberry Pi 2B triggers an undefined exception
when executing the instruction. The bug we identified in
Raspberry Pi 4B affects certain cryptographic instructions,
such as AESD (AES decryption) and SHA256H2 (SHA-
256 hashing). These instructions should be implemented with
the cryptography extension enabled. However, in the case
of Raspberry Pi 4B, executing these instructions triggers
undefined exceptions. Similar to QEMU at user-level, most
of the inconsistent instructions are due to the unpredictable
implementation in the Arm manual in ARMv7. Additionally,
at the system-level, the test cases may use different initial
values of the stack pointer, which leads to inconsistencies in
the final state. Therefore, we classify inconsistent instructions
that read the value of SP as ”Others”.

Answer to RQ3: EXAMINER PRO can detect in-
consistent instructions. In total, 60,630 inconsistent in-
struction streams are found, which covers 33.3% (i.e.,
606/1,834) instruction encodings and 31.7% instructions
(i.e., 278/877).

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE V: The results of differential testing for QEMU at system-level. The attributes denotes the same meaning explained in the caption
of Table IV.

Architecture ARMv7 ARMv8 Overall
Experiment Setup
Instruction Set A32 T32&T16 A64 -
QEMU Binary qemu-system-arm qemu-system-aarch64 -
QEMU Model Cortex-A7 Cortex-A72 -
Device Name RaspberryPi 2B RaspberryPi 4B -
CPU Time / 1,000 Inst S (Device) 1.02s 0.38s 2.19s -
Total Time / 1,000 Inst S (Device) 1061.65s 782.39s 1,780.95s -
CPU Time / 1,000 Inst S (QEMU) 3.28s 0.28s 8.29s -
Total Time / 1,000 Inst S (QEMU) 15.05s 429.05s 43.11s -
Tested Inst S 801,583 761,190 1,084,692 2,647,465
Tested Inst E 476 529 829 1,834
Tested Inst 299 301 571 877
Testing Result The percentage is based on the number of inconsistent instructions (streams/encodings)
Inconsistent Inst S 19,805 | 2.5% 20,164 | 2.6% 20,661 | 1.9% 60,630 | 2.3%
Inconsistent Inst E 323 | 67.9% 219 | 41.4% 64 | 7.7% 606 | 33.0%
Inconsistent Inst 211 | 70.6% 153 | 50.8% 54 | 9.5% 278 | 31.7%
Inconsistent Behaviors The percentage is based on the number of inconsistent instructions (streams/encodings)
Exception (Inst S) 16,742 | 84.5% 15,032 | 74.5% 1,805 | 8.7% 33,579 | 55.4%
Exception (Inst E) 280 170 7 457
Exception (Inst) 210 145 7 227
Register/Memory (Inst S) 3,041 | 15.4% 5,095 | 25.3% 18,839 | 91.2% 26,975 | 44.5%
Register/Memory (Inst E) 148 168 55 371
Register/Memory (Inst) 100 110 45 170
Others (Inst S) 22 | 0.1% 37 | 0.2% 17 | 0.1% 76 | 0.1%
Others (Inst E) 8 13 4 25
Others (Inst) 8 12 4 22
Root Cause The percentage is based on the number of inconsistent instructions (streams/encodings)
Bugs (Inst S) 477 | 2.4% 198 | 1.0% 425 | 2.1% 1,100 | 1.8%
Bugs (Inst E) 125 3 5 133
Bugs (Inst) 72 3 5 78
UNPRE. (Inst S) 16,303| 82.3% 15,320 | 76.0% 1,454 | 7.0% 33,077 | 54.6%
UNPRE. (Inst E) 168 169 7 344
UNPRE. (Inst) 149 144 7 176
Others (Inst S) 3,025 | 15.3% 4,646 | 23.0% 18,782 | 90.9% 26,453 | 43.6%
Others (Inst E) 147 164 54 361
Others (Inst) 99 106 44 168

D. Difference between Inconsistent Instructions (RQ4)

Testing Result. We discovered that the system-level testing in
the ARMv7 architecture revealed fewer inconsistent instruc-
tion streams compared to the user-level testing. One possible
reason for this difference could be that we tested different
versions of QEMU at the user-level (version 5.1.0) and system-
level (version 7.2.0). Certain bugs or inconsistencies in the
earlier version of QEMU used in the user-level testing were
fixed in the later version used in the system-level testing. In the
ARMv8 architecture, the system-level testing revealed more
inconsistent instruction encodings and instructions compared
to the user-level testing. This difference could be attributed to
the different initial state of the Stack Pointer (SP) at system-
level as mentioned in RQ3. The variation in SP’s initial state
could lead to different behaviors and outcomes for certain
instructions, resulting in a higher number of inconsistencies
observed at the system level.

Inconsistent Behaviors. In ARMv7, we observed that both
system-level and user-level testing approaches exhibited simi-
lar inconsistent behaviors. Most of these inconsistencies were
caused by differences in signals or exceptions triggered by
the tested instructions. This implies that the discrepancies be-
tween the emulated environment and the real device primarily
manifest as variations in the exception handling mechanisms.

However, in the ARMv8 architecture, we found that system-
level testing yielded more prominent inconsistent behaviors
related to different register or memory values.

Root Cause. In ARMv7, we observed that a significant
portion of the inconsistent instructions at both user-level and
system-level testing can be attributed to the unpredictable
implementation described in the Arm manual. In ARMv8, we
observed that the different initial system state became a major
factor contributing to the inconsistencies at the system-level.
When it comes to user-level testing, the buggy inconsistent
instructions are primarily caused by bugs or misbehavior of
specific instructions in the QEMU emulator. On the other hand,
at the system-level testing , the buggy inconsistencies are more
closely related to the system status and system setup. These
discrepancies can occur due to differences in the initialization
process, handling of system registers, or other system-level
factors that influence the execution of instructions. Besides,
bugs in real devices are discovered at the system-level.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Answer to RQ4: A large number of inconsistent in-
struction streams were discovered in both user-level and
system-level testing. In terms of inconsistent behaviors,
both the user-level and system-level testing approaches
in ARMv7 exhibited similar patterns and root causes.
However, in ARMv8, the system-level testing revealed
more significant inconsistencies, particularly related to
variations in register or memory values.

E. Generalization of EXAMINER PRO (RQ5)

To demonstrate the generality of EXAMINER PRO, we
further apply EXAMINER PRO on evaluating the other two
lightweight but also popular CPU emulators (i.e., Unicorn in
version 1.0.2rc4 and Angr in version 9.0.7833). Different from
QEMU, Unicorn and Angr focus solely on emulating the CPU
and do not emulate the entire system. These emulators lack
system-level emulation and do not offer options for instruction
privilege. Consequently, our testing of these emulators is
limited to the user level. At the user level, both Unicorn
and Angr do not provide options to specify the ARMv5
or ARMv6 architecture. In this case, we evaluate ARMv7
and ARMv8. Meanwhile, Unicorn and Angr do not have
good support on advanced instructions [60]. For instance,
many SIMD instructions will make Angr crash, resulting in
5 new bugs. Instructions (e.g., WFE [61]) that rely on kernel
or multiprocessor are also not supported. Thus, we filter out
these instructions in the experiment. Note that both Unicorn
and Angr do not support signals. In this case, we build the
mapping relationship between the exceptions raised by Angr
or Unicorn and the signals triggered by operating systems.
For example, the exception SimIRSBNoDecodeError raised by
Angr maps to signal number 4, which represents an illegal
instruction, triggered by operating systems.

Table VI shows the result. 223, 264 and 120, 169 inconsis-
tent instructions streams are identified for Unicorn and Angr,
respectively. They also cover hundreds of instruction encod-
ings. They share many of the same instruction streams with
QEMU. For example, 28.2% and 21.6% instruction streams
among the inconsistent instruction streams of Unicorn and
Angr can also trigger inconsistent behaviors between QEMU
and real devices. Similar to QEMU, the inconsistent behaviors
mainly consists of two types. One is the different triggered
signals and the other is the register or memory values. We
also explored the root cause of these inconsistent instructions.
Similar to QEMU, undefined implementation and bugs are the
major causes. 3 bugs are located in Unicorn.

Answer to RQ5: EXAMINER PRO is general to be
applied to the other CPU emulators (i.e., Unicorn and
Angr). With EXAMINER PRO, we disclosed 8 more bugs
(5 in Angr and 3 in Unicorn) and located a huge num-
ber of inconsistent instruction streams in the two CPU
emulators).

F. Applications of Inconsistent Instructions (RQ6)
The inconsistent instructions can be used to detect the

existence of emulators. Furthermore, detecting emulators can

1 void sig_handler(int signum) {
2 record_execution_result(i++);
3 siglongjmp(sig_env, i);
4 }
5
6 Bool JNI_Function_Is_In_Emulator() {
7 register_signals(sig_handler);
8 i = sigsetjmp(sig_env,0);
9 switch (i){

10 case 1:
11 execute(inconsistent_instruction_n);
12 record_execution_result(i++);
13 longjmp(sig_env,i++);
14 case 2:
15 ...
16 case n:
17 }
18 return compare_result();
19 }

Fig. 9: Pseudo code of the native code for detecting the emulator.

prevent the binary from being analyzed or fuzzed, which is
known as anti-emulation and anti-fuzzing technique.

1) Emulator Detection: The inconsistent instructions can
be used to detect emulators. Considering the popularity of
Android systems, we target Android applications. Specifically,
we build a native library by using the inconsistent instructions.

Figure 9 shows the pseudo code of the library. Function
JNI Function Is In Emulator (line 6) returns True if the
emulator is detected. Inside the function, we register signal
handlers for different signals (line 7). After the execution of
each instruction stream, we will record the execution result
either in the signal handler (line 2) or after the execution (line
12). Then we use the function longjmp (line 13) or siglongjmp
(line 3) to jump back to the place where calling sigsetjmp (line
8). As i would increase by 1 after the execution of one instruc-
tion stream, we can execute hundreds of instruction streams in
one function by adding corresponding case conditions. Each
instruction stream can make an equal contribution to the final
decision on whether the current execution environment is in
real devices or emulators. Finally, if more instruction streams
decide the application are running inside an emulator, the
compare result() will return True and vice versa.

We automatically generate the test library with template
code and build three Android apps for different instruction
set (i.e., A64, A32, and T32 & T16). We run the applications
on 12 different mobiles in different CPUs from 6 different
vendors. Meanwhile, we run the applications in the Android
emulator provided by Android studio (version 4.1.2). If the
function JNI Function Is In Emulator returns True in the
emulator and returns False in real mobiles. We consider it
to successfully detect the emulator. Table VII shows the
evaluation result, all the mobile apps can detect the existence
of emulators and real mobiles successfully.

2) Anti-Emulation: Anti-emulation technique is important.
On the attacker’s side, it can be proposed to increase the bar
for analyzing the malware. On the defender’s side, commercial
software needs to protect the core functionality and algorithms
from being analyzed. Thus, it is widely used in the wild [62].

The inconsistent instructions can be used to conduct anti-
emulation and can prevent the malware’s malicious behavior
from being analyzed. Specifically, we use one of the state-
of-the-art dynamic analysis platforms (i.e., PANDA [63])

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

TABLE VI: The results of differential testing for Unicorn and Angr. The attributes denotes the same meaning explained in the caption of
Table IV.

Tool Unicorn Angr
Architecture ARMv7 ARMv8 Overall ARMv7 ARMv8 Overall
Instruction Set A32 T32 & T16 A64 - A32 T32 & T16 A64 -
CPU Time 31.8s 32.9s 32.4s 97.1s 7654.2s 7873.1s 10004.1s 25531.4s
Tested Inst S 328,780 336,987 371,770 1,037,537 328,780 336,987 371,770 1,037,537
Tested Inst E 352 398 205 955 352 398 205 955
Tested Inst 313 285 77 418 313 285 77 418
Testing Result The percentage is based on the number of tested instructions (streams/encodings)
Inconsistent Inst S 103,520 | 31.5% 119,394 | 35.4% 350 | 0.1% 223,264 | 21.5% 70,493 | 21.4% 37,364 | 11.1% 12,312 | 3.3% 120,169 | 11.6%
Inconsistent Inst E 267 | 75.9% 300 | 75.4% 3 | 1.5% 570 | 59.7% 154 | 43.8% 161 | 40.4% 23 | 11.2% 338 | 35.4%
Inconsistent Inst 231 | 73.8% 254 | 89.1% 2 | 2.6% 298 | 71.3% 126 | 40.3% 130 | 45.6% 10 | 13.0% 197 | 47.1%
Intersection with QEMU The percentage is based on the number of inconsistent instructions (streams/encodings)
Inconsistent Inst S 39,515 | 38.2% 23,146 | 19.4% 350 | 100.0% 63,011 | 28.2% 22,240 | 31.5% 3,740 | 10.0% 0 | 0.0% 25,980 | 21.6%
Inconsistent Inst E 169 | 63.3% 166 | 55.3% 3 | 100.0% 338 | 59.3% 114 | 74.0% 75 | 46.6% 0 | 0% 189 | 55.9%
Inconsistent Inst 161 | 69.7% 161 | 63.4% 2 | 100.0% 199 | 66.8% 88 | 69.8% 47 | 36.1% 0 | 0% 101 | 51.3%
Inconsistent Behaviors The percentage is based on the number of inconsistent instructions (streams/encodings)
Signal (Inst S) 103,514 | 100.0% 118,141 | 99.0% 350 | 100.0% 222,005 | 99.4% 70,487 | 100.0% 37,357 | 100.0% 12,312 | 100.0% 120,156 | 100.0%
Signal (Inst E) 266 299 3 568 154 161 23 338
Signal ( Inst) 230 253 2 297 126 130 10 197
Register/Memory (Inst S) 6 | 0.0% 1,253 | 1.0% 0 | 0.0% 1,259 | 0.6% 6 | 100% 7 | 0.0% 0 | 0.0% 13 | 0.0%
Register/Memory (Inst E) 1 5 0 6 1 2 0 3
Register/Memory (Inst) 1 5 0 5 1 2 0 2
Root Cause The percentage is based on the number of inconsistent instructions (streams/encodings)
Bugs (Inst S) 0 | 0.0% 529 | 0.4% 0 | 0.0% 529 | 0.2% 0 | 0.0% 0 | 0.0% 0 | 0.0% 0 | 0.0%
Bugs (Inst E) 0 7 0 7 0 0 0 0
Bugs ( Inst) 0 5 0 5 0 0 0 0
UNPRE. (Inst S) 103,520 | 100% 118,865 | 99.6% 350 | 100% 222,735 | 99.8% 70,493 | 100% 37,364 | 100% 12,312 | 100% 120,169 | 100%
UNPRE. (Inst E) 267 296 3 566 154 161 23 338
UNPRE. (Inst) 231 253 2 297 126 130 10 197

TABLE VII: The statistics on detecting emulators.

Mobile Type CPU A64 A32 T32 & T16

Samsung S8 SnapDragon 835
Huawei Mate20 Kirin 980

IQOO Neo5 SnapDragon 870
Huawei P40 Kirin 990

Huawei Mate40 Pro Kirin 9000
Honor 9 Kirin 960

Honor 20 Kirin 710
Blackberry Key2 SnapDragon 660

Google Pixel SnapDragon 821
Samsung Zflip SnapDragon 855
Google Pixel3 SnapDragon 845

 0xe6100000
 n = UInt(Rn) = 0
 t  = UInt(Rt)  = 0
 if n == t then UNPREDICTABLE
  

void sigill_handler(){
    /*malicious behavior*/
}

void sigsegv_handler(){
    exit();    
}

Real Device

QEMU

Fig. 10: Inconsistent instruction can prevent the malicious behavior
being detected by emulators

to demonstrate the usage. PANDA is built upon QEMU
and supports many functionalities (e.g., taint analysis, record
and replay). We port one of the open source rootkits (i.e.,
Suterusu [64]) to Debian 7.3. As shown in Figure 10, we reg-
ister two different signal handlers for SIGILL and SIGSEGV,
respectively. Then we instrument one instruction stream (i.e.,
0xe61000000). This is an LDR instruction. According to the
encoding schema, encoding symbol Rn and Rt’ values are both
zero. The ASL code of decoding would check whether n equals

1 0x10000: e51b3008 LDR r3,[fp,#-8]
2 0x10004: e1a03000 MOV r3,r0
3 0x10008: e7cf0e9f BFC r0, #0xf, #1
4 // BFC instruction is to clear specific bits
5 // e7cf0e9f is an UNPREDICTABLE encoding
6 // e7cf0e9f is executed normally in real device
7 // e7cf0e9f triggers SIGILL signal on QEMU
8 0x1000c: e1a00003 MOV r0,r3
9 0x10010: e50b3008 STR r3,[fp,#-8]

Fig. 11: Instrumented instruction streams for anti-fuzzing.

to t. If so, it is an UNPREDICTABLE instruction stream.
Real devices think this is an illegal instruction stream and
will raise the SIGILL signal while PANDA tries to execute
the instruction stream. Then SIGSEGV will be raised as the
address pointed by R0 cannot be accessed. In this case, the
malicious behavior will only be triggered in real devices.
Meanwhile, when we use the PANDA to analyze the malware,
no malicious behavior will be monitored and the program will
exit inside the sigsegv handler.

3) Anti-Fuzz: Fuzzing is widely used to explore vulner-
abilities. To help the released binaries from being fuzzed
by attackers, researchers utilize anti-fuzzing techniques [65],
[66]. Considering that many new binary fuzzing frameworks
are based on QEMU [21], [24], [25], [23], the inconsistent
instructions can be used as a mitigation approach towards
fuzzing technique.

We demonstrate how the inconsistent instructions can be
used to conduct anti-fuzzing tasks with a relatively low
overhead and high decreased coverage ratio. Specifically, we
instrument a snippet of assembly code into the release binary,
which is shown in Figure 11. At address 0x10008, the instruc-
tion BFC is used to clear bits for register R0. Note we move the
value of R0 to R3 before the instruction BFC and return it back
after the execution of BFC. This can guarantee the instrumented
instructions will not affect the execution result of the binary

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

02h 07h 12h 17h 22h
Time

250

500

750

1000

1250

1500

1750

Pa
th

s

Normal
Instrumented

(a) libjpeg

02h 07h 12h 17h 22h
Time

200

400

600

800

1000

1200

Pa
th

s

(b) libpng

02h 07h 12h 17h 22h
Time

0

500

1000

1500

2000

2500

Pa
th

s

(c) libtiff

Fig. 12: The result of Anti-Fuzzing experiment on three libraries. The blue lines show the coverage over 24 hours of fuzzing.
The orange line shows the coverage for instrumented binaries, which cannot increase due to failed executions of QEMU.

TABLE VIII: Overhead information of anti-fuzzing.

Library Test Suite1 Space Overhead Runtime Overhead
libpng (readpng) built-in (254) 4.0% (+7KB) 0.52%
libjpeg (djpeg) GIT (97) 4.3% (+8KB) 0.61%
libtiff (tiffinfo) built-in (61) 2.2% (+8KB) 0.59%

Overall 3.5% 0.57%
1 The number of test inputs in test suite is shown in the bracket.

on the real device. The instruction stream 0xe7cf0e9f is an
UNPREDICTABLE one. It can be executed normally in real
devices while triggering a signal on QEMU.

We developed a GCC plugin to instrument the above
mentioned inconsistent instruction streams at each function
entry and apply this plugin on three popular used libraries (i.e.,
libtiff, libpng, and libjpeg) during the compilation process to
generate released binaries. Table VIII shows the space and
runtime overhead of the instrumented binary compared with
the normal (non-instrumented) ones. The space overhead is
measured by comparing the binary size. For runtime overhead,
we measure it by running test suites on both binaries and
comparing the cost of time. We noticed that the instrumented
binary imposes negligible space and runtime overhead to the
binary. The average space overhead for the protected binary
is around 4%, and the runtime overhead is less than 1%.

We then measure the effectiveness of anti-fuzzing. We fuzz
the instrumented binaries and the normal ones with AFL-
QEMU (version 2.56b) for 24 hours. The seed corpus is the
test suite used for each library in Table VIII. We collect the
coverage information for the instrumented and the normal
ones. Figure 12 shows the results. It is easy to see that the
coverage for instrumented binaries cannot increase (because
QEMU fails to execute binaries correctly), while the normal
ones will increase with the fuzzing time.

Note this is to demonstrate the ability of inconsistent
instructions on anti-fuzzing tasks. How to stealthily use these
instructions is out of our scope. It is not easy for attackers
to precisely recognize all the inconsistent instructions, which
will be discussed in detail (Section V).

Answer to RQ6: The inconsistent instructions are useful.
We demonstrate that the inconsistent instructions can be
used to detect the existence of the CPU emulator and
prevent the malicious behavior from being monitored
by dynamic analysis frameworks. Furthermore, the path
coverage of programs fuzzed in emulators can be highly
decreased with the help of inconsistent instructions.

V. DISCUSSION

A. Advancement over iDEV [35]

Though both EXAMINER PRO and iDEV use differential
testing with generated test cases, EXAMINER PRO has better
scalability and capability on locating inconsistent instruction
streams in terms of the following perspectives. 1) Test case
generation: EXAMINER PRO utilizes the symbolic execution
technique to generate the test cases, which can cover more
execution paths. The fact that we can detect the emulator bugs
with about 2.7 million instruction streams demonstrates the
effectiveness of our test cases. On the contrary, 34 million
instruction streams are tested by iDEV, and no bugs are found.
2) Differential testing: iDEV only compares the triggered
signals while EXAMINER PRO compares the whole CPU
state including signal number or raised exceptions, register
value, memory value, etc. In this case, we can find more
inconsistent instructions compared with iDEV in theory. For
instance, among the 171,858 inconsistent instruction streams
for QEMU, 8,195 are inconsistent in terms of different register
or memory values at user-level, which cannot be detected by
iDEV. Furthermore, Unicorn and Angr can not trigger the
signals and iDEV can not work on testing these two emulators.
Thus, the identified 223,264 instruction streams for Unicorn
and the 120,169 ones for Angr can not be detected by iDEV in
theory, either. EXAMINER PRO supports testing Unicorn and
Angr by building the mapping relationship between the trig-
gered signal number by real devices and the raised exceptions
by the emulators. 3) Evaluation: We evaluate EXAMINER PRO
on 4 different Arm versions and three CPU emulators while
iDEV only evaluate QEMU on one specific Arm version (i.e.,
ARMv7). This demonstrates the scalability of EXAMINER
PRO. For iDEV, testing 34 millions test cases on machine in
ARMv5&v6 would take a rather long time (i.e., more than 500
CPU hours), which is not efficient. Thanks to our symbolic

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

execution engine, we can explore most of the execution paths
with about 2.7 million test cases, which can save a lot of
testing time, and find bugs on all the emulators. 4) Usage
Scenario: Although the iDEV authors discussed the potential
usage scenario of the inconsistent instructions, we demonstrate
how these inconsistent instruction can be used in practice
and how they can be abused by attackers with three different
applications.

B. Significance of Signal Inconsistency and Exception Incon-
sistencies

In Examiner-Pro, the modeled CPU state is different between
user-level and system-level, which is discussed in detail in
Section III-C. Apart from the program counter, registers, mem-
ories, and the status register, user level will check the signal
inconsistency while system level will check the exception
inconsistency after the tested instruction stream is executed.
The potential effects of signal inconsistencies and exception
inconsistency are from the following 3 aspects. 1) System
Stability: signal inconsistencies may affect the specific user
applications at the user-level. However, at the system-level,
exception inconsistencies can have broader implications. A
mis-triggered exception at the system level can result in
system crashes, instability, or even system-wide failures. 2)
Security Risks: signal inconsistencies at the user level may
create opportunities for privilege escalation or unauthorized
access within the application’s context. However, at the system
level, exception inconsistencies can be more severe and pose
significant security threats. An attacker exploiting exception
inconsistencies at the system-level may gain control over
critical system resources or disrupt essential operations. 3)
Resource Utilization‘: In user-level, signal inconsistencies
may impact resource management within the application’s
scope. For example, if a signal meant to release resources
is not properly handled, it can result in resource leaks or
inefficient resource utilization. At the system-level, exception
inconsistencies can have broader resource management im-
plications. Mis-triggered exceptions can lead to resource ex-
haustion, system-wide performance degradation, or denial-of-
service scenarios affecting multiple applications or processes.

C. Threats to Validity

Selection of Testing Real devices and Emulators The
selection of different real devices and emulators may yield
varying inconsistency results. Potential bugs in the imple-
mentation of a real device could result in false negatives
during differential testing. Emulators and real devices might
adopt different implementation choices for unpredictable in-
structions, leading to variability in the number of inconsistent
instructions. To mitigate this threat, we conducted tests on
three emulators, assessing whether the inconsistent results
align with the ISA. The testing on Arm’s own emulators may
help us find real device bugs. However, most of the Arm
emulators are closed source and they are not widely used in
the different kinds of dynamic analysis tools (e.g., fuzzing,
malware analysis, crash analysis). Our focus centers more

on dynamic analysis tools such as QEMU and angr, aimed
at detecting emulator bugs. Future work could extend the
application of EXAMINER PRO to testing on Arm emulators.
Internal Validity We implemented a symbolic execution
engine for ASL and all scripts by ourselves with careful
review; despite the extensive testing phase, we may not
exclude all possible implementation errors. For the sake of
replicability, we made all data and scripts employed publicly
available 2. Another aspect of internal validity lies in the errors
in the manual analysis phase of differential testing results, as
well as the applicability and generality of the inconsistencies
analysis. We made efforts to automate the analysis of incon-
sistencies detected by our differential engine. The majority
of inconsistencies caused by unpredictable instructions can be
automatically identified. We only manually checked the corner
cases, which require careful attention and might potentially
reveal emulator bugs.

D. Limitations and Future Works

Testing Instructions in Privileged Environments We suc-
cessfully extend EXAMINER PRO to system-level and con-
ducted system-level testing of instruction streams. However,
during the testing process, we encountered occasional crashes
(0.1%-0.2%) in the master-slave architecture, as shown in
Table IV. When such crashes occurred, manual intervention
was required to restart the system and resume testing. Despite
these occasional crashes, the majority of instructions could be
automatically tested by EXAMINER PRO. To ensure the stabil-
ity of the system-level testing, we filtered out instructions that
update the Program Counter (PC), such as branch instructions.
Randomly updated PC values can lead to unrecoverable system
states, preventing us from capturing the system state through
kgdb and hindering the automatic testing process. We left a
more sophisticated test case design of updated PC instruction
as a future work.
Testing Instruction Stream Sequences EXAMINER PRO
now tests only one instruction stream each time during the dif-
ferential testing. We can also test multiple instruction streams
(instruction stream sequences) in the differential testing. The
instruction stream sequences may trigger multiple system
states and we can test the decoding/executing logic towards
different state flags. For example, our testing does not include
the IT blocks in the T32 instruction set. How to design
representative instruction stream sequences, and how to locate
the inconsistent one will be the challenge, which is left as
future work. Nevertheless, we have already discovered a huge
number of inconsistent instruction streams with EXAMINER
PRO, covering 29.5% of instructions. Every instruction stream
sequence that contains the inconsistent instruction stream can
result in inconsistent behaviors.
Instruction Execution Context The initial state of the dif-
ferential engine may affect the execution result of instruction.
Instruction would explore different ASL decoding paths based
on different register values and system status. We initialized all
general-purpose registers to zero, potentially resulting in false

2https://github.com/ZXXYy/ExaminerPro

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

negatives and overlooking certain behaviors. For example,
the majority of memory access instructions may trigger a
data abortion exception since the base register for calculating
addresses is set to zero, and we do not map the accessed mem-
ory to pages before executing the memory access instruction.
Exploring more diverse initial states for a broader range of
instruction behaviors poses a challenge, and addressing this is
deferred to future work.
Detecting (Ab)Used Inconsistent Instructions Sec-
tion IV-F shows that attackers or vendors can (ab)use these
inconsistent instructions. The abused inconsistent instructions
are not easy to be detected. This is because there are many
inconsistent instructions and some of them are even commonly
used (i.e., BLX). Apart from this, attackers can encrypt these
instruction streams as data. Then these encrypted instruction
streams can be decrypted and executed during runtime, which
can increase the bar for detection. Furthermore, how to hide
these inconsistent instruction streams from being detected is
a Cat and Mouse problem. Stealthily using these instructions
is out of our scope.
Other Architectures The whole framework of EXAMINER
PRO is architecture-independent. We apply symbolic execution
technique on Arm ASL, which can help to explore multiple
behaviors and generate sufficient test cases automatically. For
the other architectures, symbolic execution technique can also
be used if similar architecture specific language is provided.
Otherwise, new test case generation algorithm should be devel-
oped in order to explore more execution behaviors. However,
this is one time effort. The generated test cases can be used to
test the implementation of both hardwares and emulators. In
addition, the CPU state for the other architectures should also
be modeled correctly. Based on the correctly modeled CPU
state, the differential testing engine needs to set the initial
CPU state before the execution of the target instruction and
dump the CPU state for comparison after the execution.

VI. RELATED WORK

A. Testing CPU Emulators

Several works are proposed to test the CPU emulators across
different architectures.

For x86/x64 architecture, Lorenzo et al. proposed Emu-
Fuzzer to test the CPU emulators [33], [34]. However, the
seed used for testing mainly relies on randomization and a
CPU-assisted mechanism, which may not cover sufficient CPU
behaviors. KEmuFuzzer is proposed to test the whole system
emulators [32]. However, KEmuFuzzer relies on the manually
written template to generate test cases and is tested on a
hardware-assisted virtual machine rather than a real physical
CPU. Shi et al. [57] proposed a method to test instructions at
the system level by carefully crafting test cases based on the
instruction semantics defined in Intel’s x86 CPU manual. Their
approach utilized a master-slave architecture to execute and
test the instructions. However, human effort is still required in
the process of generating the test cases. PokeEMU [31] utilizes
binary symbolic execution to generate more test cases from
a high-fidelity emulator and apply these test cases on low-
fidelity emulators. However, whether the high-fidelity emulator

strictly follows the rule of specification is unknown. We can
translate the ASL into a sequential emulator using Sail [67],
which supports the automatic generation of emulator code in
both C and OCaml. The sequential emulator, conforming to
ASL, can be regarded as a high-fidelity emulator, covering
a significant portion of ISA specifications. By adopting a
similar strategy to PokeEMU, we can automatically explore
more initial machine states for tested instructions, leading to
a broader coverage of CPU behaviors. We have identified this
as a potential avenue for future work.

For Arm architecture, iDEV [35] studies the semantic
deviation problem in Arm instruction, the generated test cases
are not sufficient and redundant, which cannot cover all
the instruction behaviors. Meanwhile, iDEV only focuses on
the triggered signals during the execution process without
checking the whole CPU state, resulting in many inconsistent
instructions unexplored. Furthermore, the evaluation is limited
to ARMv7 and QEMU. There are many other Arm architec-
tures (e.g., ARMv5, ARMv6, and ARMv8) and lightweight
but also popular emulators (i.e., Unicorn, Angr), which many
frameworks are based on [17], [22], [36], [37]. Proteus [68]
aimed to identify instruction discrepancies between Arm CPUs
and Android emulators. However, they only use accurate
software models of Arm CPUs instead of real physical CPUs.

B. Verifying Physical CPUs

Several approaches have been proposed to enhance the
generation of processor-level test programs for processor ver-
ification, which is complementary but related to emulator
testing. Model-based test generators use an input format
specification to guide the generation process, integrating con-
straints processed by a CSP/SMT solver [69], [70], [71], [72].
IBM’s Genesys-Pro [69] enables users to define any desired
verification scenario and a test case template. It generates a
test by formulating and solving a separate constraint problem
using a CSP solver for each test instruction. Bauereiss et
al [72] developed a test generator to verify the intended
security property of the Arm Morello architecture. Instead of
performing symbolic execution directly on the ASL as our
work, they translated ASL into Isabelle/HOL and utilized the
Isla symbolic execution tooling for Sail [67] to automatically
generate interesting instruction-sequence tests. However, they
excluded non-deterministic parts of the specification, such as
unpredictable instructions when generating test cases, which
should be included in our testing. Katz et al [73] pre-
sented an optimized test generation framework that effectively
propagates constraints among multiple instructions. Mutation-
based fuzzing is also employed in processor verification.
DifuzzRTL [74] developed a register-coverage guided fuzzing
technique to automatically discover unknown bugs in CPU
RTLs.

C. Differential Testing

Differential testing is introduced by McKeeman et al. [75] to
detect bugs by comparing the inconsistent behaviors between
different entities. For example, Yang et al. proposed Csmith, a
powerful tool that can generate multiple C programs. With

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

Csmith, hundreds of bugs are detected in the C compiler.
Regarding the same goal, Le et al. introduced equivalence
modulo inputs (EMI) [76] and many other differential testing
tools are built based on EMI to validate the compiler imple-
mentations [77], [78]. In addition, researchers also utilize dif-
ferential testing to validate the Database Management Systems
(DBMS). Slutz et al. proposed the tool RAGS to explore bugs
by executing different SQL queries on multiple DBMS. Gu et
al. evaluate the accuracy of DBMS optimizer by using options
and hints to force the generation of different query plans.
Jung et al. developed APOLLO [79] to test the performance
regression bugs in DBMSs . Furthermore, differential testing
is powerful and applied to different domains such as testing
SMT solvers [80], [81], JVM implementations [82] , symbolic
execution engines [82], and PDF readers [83].

D. Anti-Emulation Technique

Previous works [27] divide the anti-emulation technique into
three categories. They are differences in behavior, differences
in timing, and hardware specific values. Our work can au-
tomatically locate the inconsistent instructions, which result
in different behaviors and can be used by the previous anti-
emulation technique. Jang et al. [28] address the importance
of anti-emulation techniques on protecting the Commercial-
Off-the-Shelf (COTS) software from being debugged or used
without buying hardware. They propose three different anti-
emulation techniques. However, some techniques rely on the
race condition are not easy to trigger.

VII. CONCLUSION

We design and implement EXAMINER PRO, a framework
that can automatically locate the inconsistent Arm instructions
across different privileges. With EXAMINER PRO, we gen-
erate 2,774,649 representative instruction streams and detect
171, 858 and 60, 630 inconsistent ones for QEMU at user-level
and system-level respectively. To demonstrate EXAMINER
PRO’s generalization, we further apply EXAMINER PRO on
two other emulators (i,e., Unicorn and Angr) and a huge
number of inconsistent instructions are located. We noticed
that bugs and undefined implementation in Arm manual are
the root causes. Furthermore, we disclosed 17 bugs (7 in
QEMU, 3 in Unicorn, 5 in Angr, 2 in real devices). Some
of them influence commonly used instructions (e.g., BLX) and
can even crash the emulators (e.g., QEMU and Angr). We
also demonstrate the capability of inconsistent instructions on
detecting emulators, anti-emulation, and anti-fuzzing.

REFERENCES

[1] “64 bit juno r2 arm® development platform,”
https://developer.arm.com/-/media/Arm%20Developer%20Community/-
PDF/Juno%20r2%20datasheet.pdf.

[2] A. Davanian, Z. Qi, Y. Qu, and H. Yin, “Decaf++: Elastic whole-
system dynamic taint analysis,” in Proceedings of the 22nd International
Symposium on Research in Attacks, Intrusions and Defenses, 2019.

[3] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and
H. Yin, “Make it work, make it right, make it fast: building a platform-
neutral whole-system dynamic binary analysis platform,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
2014.

[4] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the {OS}
and dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21st USENIX Security Symposium, 2012.

[5] A. Alwabel, H. Shi, G. Bartlett, and J. Mirkovic, “Safe and automated
live malware experimentation on public testbeds,” in Proceedings of the
7th Workshop on Cyber Security Experimentation and Test, 2014.

[6] J. Wei, L. K. Yan, and M. A. Hakim, “Mose: Live migration based on-
the-fly software emulation,” in Proceedings of the 31st Annual Computer
Security Applications Conference, 2015.

[7] C. Carmony, X. Hu, H. Yin, A. V. Bhaskar, and M. Zhang, “Extract me
if you can: Abusing pdf parsers in malware detectors.” in Proceedings of
the 23rd Annual Network and Distributed System Security Symposium,
2016.

[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-
vivo multi-path analysis of software systems,” Acm Sigplan Notices,
2011.

[9] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection and monitor-
ing through vmm-based “out-of-the-box” semantic view reconstruction,”
ACM Transactions on Information and System Security, 2010.

[10] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware,” in Proceedings
of the 23rd Annual Network and Distributed System Security Symposium,
2016.

[11] Q. Feng, A. Prakash, H. Yin, and Z. Lin, “Mace: High-coverage and ro-
bust memory analysis for commodity operating systems,” in Proceedings
of the 30th annual computer security applications conference, 2014.

[12] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing android
apps,” in Proceedings of the 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2016.

[13] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Proceedings of the 2020 Annual Computer Security Applications
Conference, 2020.

[14] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage,
and K. Levchenko, “Jetset: Targeted firmware rehosting for embedded
systems,” in Proceedings of the 30th USENIX Security Symposium, 2021.

[15] Z. L. Chua, Y. Wang, T. Baluta, P. Saxena, Z. Liang, and P. Su,
“One engine to serve’em all: Inferring taint rules without architectural
semantics.” in Proceedings of the 26th Annual Network and Distributed
System Security Symposium, 2019.

[16] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing linux malware,” in Proceedings of the 2018 IEEE symposium on
security and privacy, 2018.

[17] G. Hernandez, F. Fowze, D. Tian, T. Yavuz, and K. R. Butler, “Fir-
musb: Vetting usb device firmware using domain informed symbolic
execution,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[18] “Qemu,” https://www.qemu.org/.
[19] “Unicorn,” https://www.unicorn-engine.org/.
[20] “Angr,” https://angr.io/.
[21] “Afl qemu mode: high-performance binary-only instrumentation for afl-

fuzz,” https://github.com/google/afl/tree/master/qemu mode.
[22] D. Maier, B. Radtke, and B. Harren, “Unicorefuzz: On the viability of

emulation for kernelspace fuzzing,” in Proceedings of the 13th USENIX
Workshop on Offensive Technologies, 2019.

[23] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in Proceedings of the 28th USENIX Security Symposium,
2019.

[24] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface mod-
eling,” in Proceedings of the 29th USENIX Security Symposium, 2019.

[25] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “Halucinator: Firmware
re-hosting through abstraction layer emulation,” in Proceedings of the
29th USENIX Security Symposium, 2020.

[26] “TriforceAFL,” https://github.com/nccgroup/TriforceAFL.
[27] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”

in Proceedings of the 2007 International Conference on Information
Security. Springer, 2007.

[28] D. Jang, Y. Jeong, S. Lee, M. Park, K. Kwak, D. Kim, and B. B.
Kang, “Rethinking anti-emulation techniques for large-scale software
deployment,” Computers & Security, 2019.

[29] A. Issa, “Anti-virtual machines and emulations,” Journal in Computer
Virology, 2012.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 20

[30] C. V. Liţă, D. Cosovan, and D. Gavriluţ, “Anti-emulation trends in
modern packers: a survey on the evolution of anti-emulation techniques
in upa packers,” Journal of Computer Virology and Hacking Techniques,
2018.

[31] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings
of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2012.

[32] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, “Testing
system virtual machines,” in Proceedings of the 19th international
symposium on software testing and analysis, 2010.

[33] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing cpu
emulators,” in Proceedings of the eighteenth international symposium
on Software testing and analysis, 2009.

[34] L. Martignoni, R. Paleari, A. Reina, G. F. Roglia, and D. Bruschi, “A
methodology for testing cpu emulators,” ACM Transactions on Software
Engineering and Methodology, 2013.

[35] S. Qin, C. Zhang, K. Chen, and Z. Li, “idev: exploring and exploiting
semantic deviations in arm instruction processing,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2021.

[36] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is
mine: Automatic shellcode transplant for remote exploits,” in Proceed-
ings of the 38th IEEE Symposium on Security and Privacy, 2017.

[37] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu, “Concolic execution on small-
size binaries: Challenges and empirical study,” in Proceedings of the 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2017.

[38] A. Reid, “Trustworthy specifications of arm® v8-a and v8-m system
level architecture,” in Proceedings of the 16th Formal Methods in
Computer-Aided Design, 2016.

[39] “Blx instruction bug in qemu,” https://bugs.launchpad.net/qemu/+bug/1925512.
[40] “Str instruction bug in qemu,” https://bugs.launchpad.net/qemu/+bug/1922887.
[41] “Unaligned data access bug in qemu,”

https://bugs.launchpad.net/qemu/+bug/1905356.
[42] “Wfi instruction bug in qemu,” https://bugs.launchpad.net/qemu/+bug/1926759.
[43] “Simd bug in qemu system,” https://gitlab.com/qemu-project/qemu/-

/issues/1500.
[44] “System register configuration bug in qemu system,”

https://gitlab.com/qemu-project/qemu/-/issues/1499.
[45] “Ldc unimplementation in qemu system,” https://gitlab.com/qemu-

project/qemu/-/issues/1498.
[46] “Bugs in unicorn,” https://github.com/unicorn-

engine/unicorn/issues/1424.
[47] “Attributeerror bug in angr,” https://github.com/angr/angr/issues/2803.
[48] “Vabs bug in angr,” https://github.com/angr/angr/issues/2808.
[49] “Vmax bug in angr,” https://github.com/angr/angr/issues/2809.
[50] “Vmul bug in angr,” https://github.com/angr/angr/issues/2810.
[51] “Vcvt bug in angr,” https://github.com/angr/angr/issues/2829.
[52] “Examiner,” https://github.com/valour01/examiner.
[53] “ARM Exploration tools,” https://developer.arm.com/architectures/cpu-

architecture/a-profile/exploration-tools.
[54] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-

architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum. Citeseer, 2011, pp. 29–30.

[55] S.-T. Shen, S.-Y. Lee, and C.-H. Chen, “Full system simulation with
qemu: An approach to multi-view 3d gpu design,” in Proceedings of
2010 IEEE International Symposium on Circuits and Systems. IEEE,
2010, pp. 3877–3880.

[56] K. Tam, A. Fattori, S. Khan, and L. Cavallaro, “Copperdroid: Automatic
reconstruction of android malware behaviors,” in NDSS Symposium
2015, 2015, pp. 1–15.

[57] H. Shi, A. Alwabel, and J. Mirkovic, “Cardinal pill testing of system vir-
tual machines,” in 23rd USENIX Security Symposium (USENIX Security
14), 2014, pp. 271–285.

[58] “Capstone,” https://www.capstone-engine.org/.
[59] “Z3Prover,” https://github.com/Z3Prover/z3.
[60] “ARM SIMD Instructions,” https://developer.arm.com/documentation/dht0002/a/Introducing-

NEON/What-is-SIMD-/ARM-SIMD-instructions.
[61] “ARM WFE Instruction,” https://developer.arm.com/documentation/ddi0360/e/programmer-

s-model/additional-instructions/wait-for-event-wfe.
[62] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards

an understanding of anti-virtualization and anti-debugging behavior
in modern malware,” in Proceedings of the 38th IEEE International
Conference on Dependable Systems and Networks, 2008.

[63] “Panda.re,” https://panda.re/.
[64] “Suterusu,” https://github.com/mncoppola/suterusu.

[65] J. Jung, H. Hu, D. Solodukhin, D. Pagan, K. H. Lee, and T. Kim,
“Fuzzification: Anti-fuzzing techniques,” in Proceedings of the 28th
USENIX Security Symposium, 2019.

[66] E. Güler, C. Aschermann, A. Abbasi, and T. Holz, “Antifuzz: Impeding
fuzzing audits of binary executables,” in Proceedings of the 28th
USENIX Security Symposium, 2019.

[67] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte et al., “Isa
semantics for armv8-a, risc-v, and cheri-mips,” Proceedings of the ACM
on Programming Languages, vol. 3, no. POPL, pp. 1–31, 2019.

[68] O. Sahin, A. K. Coskun, and M. Egele, “Proteus: Detecting android emu-
lators from instruction-level profiles,” in Research in Attacks, Intrusions,
and Defenses: 21st International Symposium, RAID 2018, Heraklion,
Crete, Greece, September 10-12, 2018, Proceedings 21. Springer, 2018,
pp. 3–24.

[69] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: Innovations in test program generation for
functional processor verification,” IEEE Design & Test of Computers,
vol. 21, no. 2, pp. 84–93, 2004.

[70] B. Campbell and I. Stark, “Randomised testing of a microprocessor
model using smt-solver state generation,” Science of Computer Program-
ming, vol. 118, pp. 60–76, 2016.

[71] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz,
M. Farkash, I. Dozoretz, and A. Goldin, “X-gen: A random test-case
generator for systems and socs,” in Seventh IEEE International High-
Level Design Validation and Test Workshop, 2002. IEEE, 2002, pp.
145–150.

[72] T. Bauereiss, B. Campbell, T. Sewell, A. Armstrong, L. Esswood,
I. Stark, G. Barnes, R. N. Watson, and P. Sewell, “Verified security
for the morello capability-enhanced prototype arm architecture,” in Eu-
ropean Symposium on Programming. Springer International Publishing
Cham, 2022, pp. 174–203.

[73] Y. Katz, M. Rimon, and A. Ziv, “Generating instruction streams using
abstract csp,” in 2012 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2012, pp. 15–20.

[74] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 1286–1303.

[75] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, 1998.

[76] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM SIGPLAN Notices, 2014.

[77] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” ACM SIGPLAN Notices, 2015.

[78] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2016.

[79] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang, “Apollo: Automatic
detection and diagnosis of performance regressions in database systems,”
Proceedings of the VLDB Endowment, 2019.

[80] D. Winterer, C. Zhang, and Z. Su, “Validating smt solvers via semantic
fusion,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020.

[81] ——, “On the unusual effectiveness of type-aware operator mutations
for testing smt solvers,” Proceedings of the ACM on Programming
Languages, no. OOPSLA, 2020.

[82] T. Kapus and C. Cadar, “Automatic testing of symbolic execution
engines via program generation and differential testing,” in Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, 2017.

[83] T. Kuchta, T. Lutellier, E. Wong, L. Tan, and C. Cadar, “On the
correctness of electronic documents: studying, finding, and localizing
inconsistency bugs in pdf readers and files,” Empirical Software Engi-
neering, 2018.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3406900

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on September 26,2024 at 03:32:54 UTC from IEEE Xplore.  Restrictions apply. 


